Solveeit Logo

Question

Question: If \(1 + 2 + 3 + ..... + n = k\), then \({1^3} + {2^3} + {3^3} + .......... + {n^3}\) is equal to ...

If 1+2+3+.....+n=k1 + 2 + 3 + ..... + n = k, then 13+23+33+..........+n3{1^3} + {2^3} + {3^3} + .......... + {n^3} is equal to
A. k2 B. k3 C. k(k+1)2 D. (k+1)3  {\text{A}}{\text{. }}{k^2} \\\ {\text{B}}{\text{. }}{k^3} \\\ {\text{C}}{\text{. }}\dfrac{{k(k + 1)}}{2} \\\ {\text{D}}{\text{. }}{\left( {k + 1} \right)^3} \\\

Explanation

Solution

Hint- Here, we will proceed by using the formula for the sum of first nn natural numbers.

Given, 1+2+3+.....+n=k1 + 2 + 3 + ..... + n = k
Since, we know that the sum of first nn natural numbers i.e., 1+2+3+.....+n=n(n+1)21 + 2 + 3 + ..... + n = \dfrac{{n\left( {n + 1} \right)}}{2}
k=n(n+1)2 (1)\Rightarrow k = \dfrac{{n\left( {n + 1} \right)}}{2}{\text{ }} \to {\text{(1)}}
Also, the sum of cubes of first nn natural numbers i.e., 13+23+33+..........+n3=[n(n+1)2]2{1^3} + {2^3} + {3^3} + .......... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}
Using equation (1), we have
13+23+33+..........+n3=[n(n+1)2]2=k2{1^3} + {2^3} + {3^3} + .......... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = {k^2}
Therefore, the sum of cubes of first nn natural numbers i.e., 13+23+33+..........+n3=k2{1^3} + {2^3} + {3^3} + .......... + {n^3} = {k^2}
Therefore, option A is correct.

Note- In these type of problems, we will simply be using some general formulas like sum of first nn natural numbers, sum of squares of first nn natural numbers and sum of cubes of first nn natural numbers which will redirect us to the final answer.