Question
Mathematics Question on Trigonometric Equations
If 1+(√1+x)tanx=1+(√1−x) then sin4x is ?
Answer
If we have the equation tany=(1+(1+x)/(1−x)), and substitute x=cosθ, we can simplify it as follows:
tany=2∣(1+cos2θ)/(1−cos2θ)∣/∣(1+sin2θ)/(1−sin2θ)∣
Simplifying further:
tany=2∣(1+cos2θ)/(sin2θ)∣/∣(1+sin2θ)/(cos2θ)∣
tany=2∣(cos4θ+cos2θ)/(sin2θ)∣/∣(sin4θ+sin2θ)/(cos2θ)∣
tany=2(cos4θ+cos2θ)/(sin4θ+sin2θ)
This can be rewritten as:
tany=2cos(8π+4θ)⋅cos(8π−4θ)/2sin(8π+4θ)⋅cos(8π−4θ)
Simplifying further:
tany=tan(8π+4θ)
From this equation, we can deduce that 4y=(2π+θ), which implies sin(4y)=cosθ=x.