Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

If 1+(1+x)tanx=1+(1x)1+ (√1+x) tanx = 1+ (√1-x) then sin4xsin4x is ?

Answer

If we have the equation tany=(1+(1+x)/(1x))tany = (1 + (1+x)/(1−x)), and substitute x=cosθx = cosθ, we can simplify it as follows:

tany=2(1+cos2θ)/(1cos2θ)/(1+sin2θ)/(1sin2θ)tany = 2 |(1+cos^2θ)/(1−cos^2θ)| / |(1+sin^2θ)/(1−sin^2θ)|

Simplifying further:

tany=2(1+cos2θ)/(sin2θ)/(1+sin2θ)/(cos2θ)tany = 2 |(1+cos^2θ)/(sin^2θ)| / |(1+sin^2θ)/(cos^2θ)|

tany=2(cos4θ+cos2θ)/(sin2θ)/(sin4θ+sin2θ)/(cos2θ)tany = 2 |(cos^4θ + cos^2θ)/(sin^2θ)| / |(sin^4θ + sin^2θ)/(cos^2θ)|

tany=2(cos4θ+cos2θ)/(sin4θ+sin2θ)tany = 2(cos^4θ + cos^2θ) / (sin^4θ + sin^2θ)

This can be rewritten as:

tany=2cos(8π+4θ)cos(8π4θ)/2sin(8π+4θ)cos(8π4θ)tany = 2cos(8π + 4θ)⋅cos(8π − 4θ) / 2sin(8π + 4θ)⋅cos(8π − 4θ)

Simplifying further:

tany=tan(8π+4θ)tany = tan(8π + 4θ)

From this equation, we can deduce that 4y=(2π+θ)4y = (2π + θ), which implies sin(4y)=cosθ=x.sin(4y) = cosθ = x.