Solveeit Logo

Question

Question: If \((1 - x + x^{2} - x^{3} + x^{4} - ..)\left( 1 + \frac{x}{2} + \left( \frac{x}{2} \right)^{2} + \...

If (1x+x2x3+x4..)(1+x2+(x2)2+(x2)3+...)(1 - x + x^{2} - x^{3} + x^{4} - ..)\left( 1 + \frac{x}{2} + \left( \frac{x}{2} \right)^{2} + \left( \frac{x}{2} \right)^{3} + ... \right)then x4x^{4}

A

5

B

x2+1(x2+4)(x2)=Ax+Bx2+4+Cx2\frac{x^{2} + 1}{(x^{2} + 4)(x - 2)} = \frac{Ax + B}{x^{2} + 4} + \frac{C}{x - 2}

C

\Rightarrow

D

x2+1=(Ax+B)(x2)+C(x2+4)x^{2} + 1 = (Ax + B)(x - 2) + C(x^{2} + 4)

Answer

x2+1=(Ax+B)(x2)+C(x2+4)x^{2} + 1 = (Ax + B)(x - 2) + C(x^{2} + 4)

Explanation

Solution

n=1n1log2n(a)=n=1nloga2n\sum_{n = 1}^{n}\frac{1}{\log_{2^{n}}(a)} = \sum_{n = 1}^{n}{\log_{a}2^{n}}

x=1x = 1

loga2.n(n+1)2=n(n+1)2loga2\log_{a}2.\frac{n(n + 1)}{2} = \frac{n(n + 1)}{2}\log_{a}2= log7log5(x2+5+x)=0=log71\log_{7}{\log_{5}(}\sqrt{x^{2} + 5 + x}) = 0 = \log_{7}1;

\Rightarrow 134+6292=[112+(13)2]+2.11.13134 + \sqrt{6292} = \lbrack 11^{2} + (\sqrt{13})^{2}\rbrack + 2.11.\sqrt{13}

\Rightarrow

(x2+5+x)1/2=5(x^{2} + 5 + x)^{1/2} = 5 \Rightarrow; (x2+x+5)=25(x^{2} + x + 5) = 25 \Rightarrow.