Solveeit Logo

Question

Question: If \(1, - 8\) are the roots of the equation \(x = 2 + 2^{2/3} + 2^{1/3},\) , then \(x^{3} - 6x^{2} +...

If 1,81, - 8 are the roots of the equation x=2+22/3+21/3,x = 2 + 2^{2/3} + 2^{1/3}, , then x36x2+6x=x^{3} - 6x^{2} + 6x =

A

8sec2θ6secθ+1=08\sec^{2}\theta - 6\sec\theta + 1 = 0

B

3x+1+1=x\sqrt{3x + 1} + 1 = \sqrt{x}

C

32x10.3x+93^{2x} - 10.3^{x} + 9

D

x2/37x1/3+10=0,x^{2/3} - 7x^{1/3} + 10 = 0,

Answer

x2/37x1/3+10=0,x^{2/3} - 7x^{1/3} + 10 = 0,

Explanation

Solution

p3+q2+q(1+3p)=0p^{3} + q^{2} + q(1 + 3p) = 0and p3+q2+q(3p1)=0p^{3} + q^{2} + q(3p - 1) = 0

Nowαaβ+b+βaα+b\frac { \alpha } { a \beta + b } + \frac { \beta } { a \alpha + b } x2+ax+3=0x^{2} + ax + 3 = 0

x2+ax+b=0x^{2} + ax + b = 0

α,β\alpha,\beta.