Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If 0<x<π0< x< \pi, then sin8x+7sin6x+18sin4x+12sin2xsin7x+6sin5x+12sin3x\frac{\sin 8 x+7 \sin 6 x+18 \sin 4 x+12 \sin 2 x}{\sin 7 x+6 \sin 5 x+12 \sin 3 x} equal to

A

2 sin x

B

sin x

C

sin 2x

D

2 cos x

Answer

2 cos x

Explanation

Solution

We have, 0<x<π0< x< \pi sin8x+7sin6x+18sin4x+12sin2xsin7x+6sin5x+12sin3x\frac{\sin 8 x+7 \sin 6 x+18 \sin 4 x+12 \sin 2 x}{\sin 7 x+6 \sin 5 x+12 \sin 3 x} [(sin8x+sin6x)+6(sin6x+sin4x)+12(sin4x+sin2x)]sin7x+6sin5x+12sin3x\frac{\left[\left(\sin 8x + \sin 6x \right)+ 6\left(\sin 6x + \sin 4x \right)+12\left(\sin 4x + \sin 2x\right)\right]}{\sin 7x + 6 \sin 5x + 12 \sin 3x} [2sin(8x+6x2)cos(8x6x2)+62sin(6x+4x)2cos(6x4x)2+122sin(4x+2x)2cos(4x2x)2]sin7x+6sin5x+12sin3x\frac{\left[2 \sin \left(\frac{8x+6x}{2}\right)\cos \left(\frac{8x - 6x}{2}\right)+6\cdot 2\sin\frac{\left(6x + 4x\right)}{2}\cos\frac{\left(6x-4x\right)}{2} + 12\cdot 2\sin \frac{\left(4x + 2x\right)}{2}\cos \frac{\left(4x - 2x\right)}{2} \right]}{\sin 7x + 6 \sin 5x + 12 \sin 3x} [2sin7xcosx+12sin5xcosx+24sin3xcosx]sin7x+6sin5x+12sin3x\frac{\left[2 \sin 7x \cos x + 12 \sin 5x \cos x + 24 \sin 3x \cos x\right]}{\sin 7x + 6 \sin 5x + 12 \sin 3x} =2cosx[sin7x+6sin5x+12sin3x]sin7x+6sin5x+12sin3x0=\frac{2 \cos x[\sin 7 x+6 \sin 5 x+12 \sin 3 x]}{\sin 7 x+6 \sin 5 x+12 \sin 3 x} 0 =2cosx=2 \cos x