Question
Mathematics Question on Trigonometric Functions
If 0<x<π, then sin7x+6sin5x+12sin3xsin8x+7sin6x+18sin4x+12sin2x equal to
A
2 sin x
B
sin x
C
sin 2x
D
2 cos x
Answer
2 cos x
Explanation
Solution
We have, 0<x<π sin7x+6sin5x+12sin3xsin8x+7sin6x+18sin4x+12sin2x sin7x+6sin5x+12sin3x[(sin8x+sin6x)+6(sin6x+sin4x)+12(sin4x+sin2x)] sin7x+6sin5x+12sin3x[2sin(28x+6x)cos(28x−6x)+6⋅2sin2(6x+4x)cos2(6x−4x)+12⋅2sin2(4x+2x)cos2(4x−2x)] sin7x+6sin5x+12sin3x[2sin7xcosx+12sin5xcosx+24sin3xcosx] =sin7x+6sin5x+12sin3x2cosx[sin7x+6sin5x+12sin3x]0 =2cosx