Question
Question: If 0 \< x \<\(\frac{\pi}{2}\), y = cot<sup>–1</sup>\(\left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \s...
If 0 < x <2π,
y = cot–1{1+sinx−1−sinx1+sinx+1−sinx}, then dxdy =
A
–1
B
1
C
½
D
–1/2
Answer
½
Explanation
Solution
y = cot–1 1+sinx−1−sinx1+sinx+1−sinx
= cot–1 ⎩⎨⎧(cos2x+sin2x)2−(cos2x−sin2x)2(cos2x+sin2x)2+(cos2x−sin2x)2⎭⎬⎫
= cot–1 {cos2x+sin2x−cos2x+sin2xcos2x+sin2x+cos2x−sin2x} [⇒0<2x<4π]
= cot−1(cot2x) = 2x ∴ dxdy = 21