Solveeit Logo

Question

Question: If 0 \< x \<\(\frac{\pi}{2}\), y = cot<sup>–1</sup>\(\left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \s...

If 0 < x <π2\frac{\pi}{2},

y = cot–1{1+sinx+1sinx1+sinx1sinx}\left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}, then dydx\frac{dy}{dx} =

A

–1

B

1

C

½

D

–1/2

Answer

½

Explanation

Solution

y = cot–1 1+sinx+1sinx1+sinx1sinx\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}

= cot–1 {(cosx2+sinx2)2+(cosx2sinx2)2(cosx2+sinx2)2(cosx2sinx2)2}\left\{ \frac{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^{2}} + \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^{2}}}{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^{2} - \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^{2}}}} \right\}

= cot–1 {cosx2+sinx2+cosx2sinx2cosx2+sinx2cosx2+sinx2}\left\{ \frac { \cos \frac { x } { 2 } + \sin \frac { x } { 2 } + \cos \frac { x } { 2 } - \sin \frac { x } { 2 } } { \cos \frac { x } { 2 } + \sin \frac { x } { 2 } - \cos \frac { x } { 2 } + \sin \frac { x } { 2 } } \right\} [0<x2<π4]\left\lbrack \Rightarrow 0 < \frac{x}{2} < \frac{\pi}{4} \right\rbrack

= cot1(cotx2)\cot^{- 1}\left( \cot\frac{x}{2} \right) = x2\frac{x}{2}dydx\frac{dy}{dx} = 12\frac{1}{2}