Question
Mathematics Question on Inverse Trigonometric Functions
If
0<x<21 and αsin−1x=βcos−1x
then a value of
sin(α+β2πα)
is
A
4(1−x2)(1−2x2)
B
4x(1−x2)(1−2x2)
C
2x(1−x2)(1−4x2)
D
4(1−x2)(1−4x2)
Answer
4x(1−x2)(1−2x2)
Explanation
Solution
The correct answer is (B) : 4x(1−x2)(1−2x2)
αsin−1x=βcos−1x=k
⇒sin−1x+cos−1x=k(α+β)
⇒α+β=2kπ.
Now
α+β2πα=2kπ2πα
=4kα=4sin−1x
sin(α+β2πα)=sin(4sin−1x)
Let
sin−1x=θ
∵x∈(0,21)
⇒θ∈(0,4π)
⇒x=sinθ
⇒cosθ=1−x2
⇒sin2θ=2x.1−x2
⇒cos2θ=1−4x2(1−x2)
=(2x2−1)2=1−2x2
∵cos2θ>0 as 2θ∈(0,2π)
⇒sin4θ=2.2x1−x2(1−2x2)
=4x1−x2(1−2x2)