Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If
0<x<12 and sin1xα=cos1xβ0 < x< \frac{1}{\sqrt2}\ and\ \frac{\sin^{-1}x}{α} = \frac{\cos^{-1}x}{β}
then a value of
sin(2παα+β)sin(\frac{2πα}{α+β})
is

A

4(1x2)(12x2)4\sqrt{(1-x^2)}(1-2x^2)

B

4x(1x2)(12x2)4x\sqrt{(1-x^2)}(1-2x^2)

C

2x(1x2)(14x2)2x\sqrt{(1-x^2)}(1-4x^2)

D

4(1x2)(14x2)4\sqrt{(1-x^2)}(1-4x^2)

Answer

4x(1x2)(12x2)4x\sqrt{(1-x^2)}(1-2x^2)

Explanation

Solution

The correct answer is (B) : 4x(1x2)(12x2)4x\sqrt{(1-x^2)}(1-2x^2)
sin1xα=cos1xβ=k\frac{\sin^{-1}x}{α} =\frac{\cos^{-1}x}{β} = k
sin1x+cos1x=k(α+β)⇒ \sin^{-1}x+\cos^{-1}x = k(α+β)
α+β=π2k⇒ α+β = \frac{π}{2k}.
Now
2παα+β=2παπ2k\frac{2\pi \alpha}{\alpha + \beta} = \frac{2 \pi \alpha}{\frac{\pi}{2k} }
=4kα=4sin1x= 4k \alpha = 4\sin^{-1} x
sin(2παα+β)=sin(4sin1x)\sin(\frac{2\pi \alpha}{\alpha + \beta}) = \sin (4\sin^{-1}x)
Let
sin1x=θ\sin^{-1}x = \theta
x(0,12)\because x \in (0,\frac{1}{\sqrt2})
θ(0,π4)⇒ \theta \in (0, \frac{\pi}{4})
x=sinθ⇒ x = \sin \theta
cosθ=1x2⇒ \cos \theta = \sqrt{1-x^2}
sin2θ=2x.1x2⇒ \sin2 \theta = 2x. \sqrt{1-x^2}
cos2θ=14x2(1x2)⇒ \cos2 \theta = \sqrt{1-4x^2(1-x^2)}
=(2x21)2=12x2= \sqrt{(2x^2-1)^2}= 1-2x^2
cos2θ>0 as 2θ(0,π2)\because cos 2\theta > 0\ as\ 2\theta \in (0, \frac{\pi}{2})
sin4θ=2.2x1x2(12x2)⇒ \sin 4 \theta = 2 . 2x\sqrt{1-x^2}(1-2x^2)
=4x1x2(12x2)= 4x\sqrt{1-x^2}(1-2x^2)