Question
Mathematics Question on Inverse Trigonometric Functions
If 0<x<1, then \sqrt{1+x^2}[\\{x cos(cot^{-1}x) +sin(cot^{-1}x)\\}^2-1]^{1/2} is equal to
A
1+x2x
B
x
C
x1+x2
D
1+x2
Answer
x1+x2
Explanation
Solution
We have, 0 < x < 1
Let cot−1x=θ
⇒cotθ=x
⇒sinθ=1+x21=sin(cot−1x)
and cosθ=1+x2x=cos(cot−1x)
Now,1+x2[xcos(cot−1x)+sin(cot−1x)2−1]1/2
=1+x2[(x1+x2x+1+x21)2−1]1/2
=1+x2[(x1+x21+x2)2−1]1/21
=1+x2[1+x2−1]1/2=x1+x2