Solveeit Logo

Question

Question: If \[0 < x < 1\] ,then \[\sqrt {1 + {x^2}} {\left[ {{{\left\\{ {x\cos \left( {{{\cot }^{ - 1}}x} \ri...

If 0<x<10 < x < 1 ,then \sqrt {1 + {x^2}} {\left[ {{{\left\\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\\}}^2} - 1} \right]^{\dfrac{1}{2}}} =
A) x1+x2\dfrac{x}{{\sqrt {1 + {x^2}} }}
B) xx
C) x1+x2x\sqrt {1 + {x^2}}
D) 1+x2\sqrt {1 + {x^2}}

Explanation

Solution

In this question, we have to find the value given expression. We proceed by considering, the inverse term y=cot1xy = {\cot ^{ - 1}}x and solve it to find the value of y=sin111+x2y = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }} and y=cos1x1+x2y = {\cos ^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}. Now we put this value in the expression and simplify to find the required answer. We will also use the fact that cos(cos1θ)=θ\cos \left( {{{\cos }^{ - 1}}\theta } \right) = \theta and sin(sin1θ)=θ\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta where θ\theta is the angle.

Complete step by step answer:
This question is based on the inverse trigonometric function.
Consider the given question,
We have to find the value of \sqrt {1 + {x^2}} {\left[ {{{\left\\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\\}}^2} - 1} \right]^{\dfrac{1}{2}}}
Let us consider the inverse trigonometric ratio y=cot1xy = {\cot ^{ - 1}}x,
now taking inverse , we have
This implies , x=cotyx = \cot y
Now we find the value of siny\sin y and cosy\cos y
i.e. siny=11+x2\sin y = \dfrac{1}{{\sqrt {1 + {x^2}} }} and cosy=x1+x2\cos y = \dfrac{x}{{\sqrt {1 + {x^2}} }}.
Taking inverse in both the values we get
y=sin111+x2y = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }} and y=cos1x1+x2y = {\cos ^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}
Thus, we have y=cot1x=sin111+x2=cos1x1+x2y = {\cot ^{ - 1}}x = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }} = {\cos ^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}
Thus from the given question, we have,
\Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\\}}^2} - 1} \right]^{\dfrac{1}{2}}}
Putting the value from above, we have
\Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\\{ {x\cos \left( {{{\cos }^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}} \right) + \sin \left( {{{\sin }^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)} \right\\}}^2} - 1} \right]^{\dfrac{1}{2}}}
We know that cos(cos1θ)=θ\cos \left( {{{\cos }^{ - 1}}\theta } \right) = \theta and sin(sin1θ)=θ\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta ,
Hence we have,
\Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\\{ {x\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{1}{{\sqrt {1 + {x^2}} }}} \right\\}}^2} - 1} \right]^{\dfrac{1}{2}}}
Taking LCM inside the curly bracket, we get
\Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\\{ {\dfrac{{{x^2} + 1}}{{\sqrt {1 + {x^2}} }}} \right\\}}^2} - 1} \right]^{\dfrac{1}{2}}}
By cancelling on dividing 1+x21 + {x^2} by 1+x2\sqrt {1 + {x^2}} , we have
\Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\\{ {\sqrt {1 + {x^2}} } \right\\}}^2} - 1} \right]^{\dfrac{1}{2}}}
On squaring we have,
1+x2[1+x21]12\Rightarrow \sqrt {1 + {x^2}} {\left[ {1 + {x^2} - 1} \right]^{\dfrac{1}{2}}}
On simplifying we have,
1+x2[x2]12\Rightarrow \sqrt {1 + {x^2}} {\left[ {{x^2}} \right]^{\dfrac{1}{2}}}
Hence on simplifying we have,
x1+x2\Rightarrow x\sqrt {1 + {x^2}}
Hence, \sqrt {1 + {x^2}} {\left[ {{{\left\\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\\}}^2} - 1} \right]^{\dfrac{1}{2}}} = x\sqrt {1 + {x^2}} . So, option CC is correct.

Note:
To find the value of inverse trigonometric ratio when value of one of the trigonometric ratio is given , we proceed as follow:
For example , we find the value of inverse other inverse trigonometric ratio , when we are given θ=cot1x\theta = {\cot ^{ - 1}}x
This imply x=cotθx = \cot \theta
We know that cotθ=baseperpendicular\cot \theta = \dfrac{{base}}{{perpendicular}}
Now from the right angle triangle , we have

From Pythagoras theorem we have
hypotenuse=1+x2\text{hypotenuse} = \sqrt {1 + {x^2}}
Hence, sinθ=11+x2\sin \theta = \dfrac{1}{{\sqrt {1 + {x^2}} }}
Taking the inverse of the values we get .
Hence , θ=sin111+x2\theta = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }} .
Similarly we can find the value of other inverse trigonometric ratios.