Question
Question: If \[0 \leqslant x < 2\pi \] , then the number of real values of x , which satisfy the equation \(\c...
If 0⩽x<2π , then the number of real values of x , which satisfy the equation cosx+cos2x+cos3x+cos4x=0;
A. 3
B. 5
C. 7
D. 9
Solution
In the above question, the given expression is cosx+cos2x+cos3x+cos4x=0 , we need to find the value of x which satisfies this expression. So, solve the expression using cosa+cosb=2cos2(a+b)cos2(a−b) trigonometric formula and get the required answer.
Complete step-by-step answer:
According to the question we need to find numbers of x that will satisfy both the equations.
Consider (1)
Given 0⩽x<2π.......................(1)
cosx+cos2x+cos3x+cos4x=0......................(2)
cosx+cos2x+cos3x+cos4x=0 cosx+cos3x+cos2x+cos4x=0 Now we can say that cosa+cosb=2cos2a+bcos2a−b....(3) 2cos2(x+3x)cos2(x−3x)+2cos2(2x+4x)cos2(2x−4x)=0 2cos2xcos(−x)+2cos(3x)cos(−x)=0 Now, cos(−a)=cos(a)
4cosxcos25xcos2−x=0
As we know that cos(−a)=cosa, so we can write
2cos2xcos(x)+2cos(3x)cos(x)=0
Taking 2cosx common we get
2cosx(cos2x+cos3x)
Again applying the formula cosa+cosb=2cos2a+bcos2a−b we get,
2cosx(2cos22x+3xcos22x−3x)
2cosx(2cos25xcos2−x)
4cosxcos25xcos2x=0
cosx=0;cos2x=0;cos25x=0 Use ,cos(2n+1)2π=0;n∈Z cosx=cos(2n+1)2π;cos2x=cos(2m+1)2π;cos25x=cos(2k+1)2π;n,k,m∈Z x=(2n+1)2π;2x=(2m+1)2π;25x=(2k+1)2π
Now, we know that 0⩽x<2π
Now taking
x=(2n+1)2π,n∈Z When; n=0=>x=2π n=1=>x=23π So,x=2π,23π.........................(4)
Now taking
2x=(2m+1)2π,k∈Z x=(2m+1)π When, m=0=>x=π..............(5)
Now taking ,
25x=(2k+1)2π,k∈Z x=(2k+1)5π When, k=0,=>x=5π k=1,=>x=53π k=2,=>x=π k=3,=>x=57π k=4,=>x=59π so, x=5π,53π,π,57π,59π.........................(6)
Now , from (4), (5), (6)
x=2π,23π,5π,53π,π,57π,59π………………..
So, there are seven values of x satisfying (1) and (2)
So, the correct answer is “Option C”.
Note: Alternative method to solve their question is
cosx+cos2x+cos3x+cos4x=0
We can also use (3) for cosx+cos2x;cos3x+cos4x,like this,
2cos23xcos2x+2cos27xcos2x=0 2cos2x(cos23x+cos27x)=0
Now, again using (3)
2cos2x(2cos5xcos2x)=0 cox2x=0;cos2x=0;cos5x=0
Similarly find the real values of x.