Solveeit Logo

Question

Question: If \[0 \leqslant x < 2\pi \] , then the number of real values of x , which satisfy the equation \(\c...

If 0x<2π0 \leqslant x < 2\pi , then the number of real values of x , which satisfy the equation cosx+cos2x+cos3x+cos4x=0\cos x + \cos 2x + \cos 3x + \cos 4x = 0;
A. 33
B. 55
C. 77
D. 99

Explanation

Solution

In the above question, the given expression is cosx+cos2x+cos3x+cos4x=0\cos x + \cos 2x + \cos 3x + \cos 4x = 0 , we need to find the value of x which satisfies this expression. So, solve the expression using cosa+cosb=2cos(a+b)2cos(ab)2\cos a + \cos b = 2\cos \dfrac{{(a + b)}}{2}\cos \dfrac{{(a - b)}}{2} trigonometric formula and get the required answer.

Complete step-by-step answer:
According to the question we need to find numbers of x that will satisfy both the equations.
Consider (1)
Given 0x<2π.......................(1)0 \leqslant x < 2\pi .......................(1)
cosx+cos2x+cos3x+cos4x=0......................(2)\cos x + \cos 2x + \cos 3x + \cos 4x = 0......................(2)
cosx+cos2x+cos3x+cos4x=0 cosx+cos3x+cos2x+cos4x=0 Now we can say that cosa+cosb=2cosa+b2cosab2....(3) 2cos(x+3x)2cos(x3x)2+2cos(2x+4x)2cos(2x4x)2=0 2cos2xcos(x)+2cos(3x)cos(x)=0 Now, cos(a)=cos(a)  \cos x + \cos 2x + \cos 3x + \cos 4x = 0 \\\ \cos x + \cos 3x + \cos 2x + \cos 4x = 0 \\\ {\text{Now we can say that}} \\\ \cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}....(3) \\\ 2\cos \dfrac{{(x + 3x)}}{2}\cos \dfrac{{(x - 3x)}}{2} + 2\cos \dfrac{{(2x + 4x)}}{2}\cos \dfrac{{(2x - 4x)}}{2} = 0 \\\ 2\cos 2x\cos ( - x) + 2\cos (3x)\cos ( - x) = 0 \\\ {\text{Now, }}\cos ( - a) = \cos (a) \\\
4cosxcos5x2cosx2=04\cos x\cos \dfrac{{5x}}{2}\cos \dfrac{{ - x}}{2} = 0
As we know that cos(a)=cosa\cos ( - a) = \cos a, so we can write
2cos2xcos(x)+2cos(3x)cos(x)=02\cos 2x\cos ( x) + 2\cos (3x)\cos ( x) = 0
Taking 2cosx2\cos x common we get
2cosx(cos2x+cos3x)2\cos x (\cos 2x + \cos 3x)
Again applying the formula cosa+cosb=2cosa+b2cosab2\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2} we get,
2cosx(2cos2x+3x2cos2x3x2)2\cos x (2\cos \dfrac{{2x + 3x }}{2}\cos \dfrac{{2x - 3x}}{2})
2cosx(2cos5x2cosx2)2\cos x (2\cos \dfrac{{5x }}{2}\cos \dfrac{{ - x}}{2})
4cosxcos5x2cosx2=04\cos x\cos \dfrac{{5x}}{2}\cos \dfrac{x}{2} = 0
cosx=0;cosx2=0;cos5x2=0 Use ,cos(2n+1)π2=0;nZ cosx=cos(2n+1)π2;cosx2=cos(2m+1)π2;cos5x2=cos(2k+1)π2;n,k,mZ x=(2n+1)π2;x2=(2m+1)π2;5x2=(2k+1)π2  \cos x = 0;\cos \dfrac{x}{2} = 0;\cos \dfrac{{5x}}{2} = 0 \\\ {\text{Use ,}}\cos (2n + 1)\dfrac{\pi }{2} = 0;n \in \mathbb{Z} \\\ \cos x = \cos (2n + 1)\dfrac{\pi }{2};\cos \dfrac{x}{2} = \cos (2m + 1)\dfrac{\pi }{2};\cos \dfrac{{5x}}{2} = \cos (2k + 1)\dfrac{\pi }{2};n,k,m \in \mathbb{Z} \\\ x = (2n + 1)\dfrac{\pi }{2};\dfrac{x}{2} = (2m + 1)\dfrac{\pi }{2};\dfrac{{5x}}{2} = (2k + 1)\dfrac{\pi }{2} \\\
Now, we know that 0x<2π0 \leqslant x < 2\pi
Now taking
x=(2n+1)π2,nZ When; n=0=>x=π2 n=1=>x=3π2 So,x=π2,3π2.........................(4)  x = (2n + 1)\dfrac{\pi }{2},n \in \mathbb{Z} \\\ {\text{When; }}n = 0 = > x = \dfrac{\pi }{2} \\\ n = 1 = > x = \dfrac{{3\pi }}{2} \\\ So,x = \dfrac{\pi }{2},\dfrac{{3\pi }}{2}.........................(4) \\\
Now taking
x2=(2m+1)π2,kZ x=(2m+1)π When, m=0=>x=π..............(5)  \dfrac{x}{2} = (2m + 1)\dfrac{\pi }{2},k \in \mathbb{Z} \\\ x = (2m + 1)\pi \\\ {\text{When, }}m = 0 = > x = \pi ..............(5) \\\
Now taking ,
5x2=(2k+1)π2,kZ x=(2k+1)π5 When, k=0,=>x=π5 k=1,=>x=3π5 k=2,=>x=π k=3,=>x=7π5 k=4,=>x=9π5 so, x=π5,3π5,π,7π5,9π5.........................(6)  \dfrac{{5x}}{2} = (2k + 1)\dfrac{\pi }{2},k \in \mathbb{Z} \\\ x = (2k + 1)\dfrac{\pi }{5} \\\ {\text{When,}} \\\ k = 0, = > x = \dfrac{\pi }{5} \\\ k = 1, = > x = \dfrac{{3\pi }}{5} \\\ k = 2, = > x = \pi \\\ k = 3, = > x = \dfrac{{7\pi }}{5} \\\ k = 4, = > x = \dfrac{{9\pi }}{5} \\\ so, \\\ x = \dfrac{\pi }{5},\dfrac{{3\pi }}{5},\pi ,\dfrac{{7\pi }}{5},\dfrac{{9\pi }}{5}.........................(6) \\\
Now , from (4), (5), (6)
x=π2,3π2,π5,3π5,π,7π5,9π5x = \dfrac{\pi }{2},\dfrac{{3\pi }}{2},\dfrac{\pi }{5},\dfrac{{3\pi }}{5},\pi ,\dfrac{{7\pi }}{5},\dfrac{{9\pi }}{5}………………..
So, there are seven values of x satisfying (1) and (2)

So, the correct answer is “Option C”.

Note: Alternative method to solve their question is
cosx+cos2x+cos3x+cos4x=0\cos x + \cos 2x + \cos 3x + \cos 4x = 0
We can also use (3) for cosx+cos2x;cos3x+cos4x,\cos x + \cos 2x;\cos 3x + \cos 4x,like this,
2cos3x2cosx2+2cos7x2cosx2=0 2cosx2(cos3x2+cos7x2)=0   2\cos \dfrac{{3x}}{2}\cos \dfrac{x}{2} + 2\cos \dfrac{{7x}}{2}\cos \dfrac{x}{2} = 0 \\\ 2\cos \dfrac{x}{2}(\cos \dfrac{{3x}}{2} + \cos \dfrac{{7x}}{2}) = 0 \\\ \\\
Now, again using (3)
2cosx2(2cos5xcos2x)=0 coxx2=0;cos2x=0;cos5x=0  2\cos \dfrac{x}{2}(2\cos 5x\cos 2x) = 0 \\\ cox\dfrac{x}{2} = 0;\cos 2x = 0;\cos 5x = 0 \\\
Similarly find the real values of x.