Solveeit Logo

Question

Question: If \[0\le x\le \pi \] and \({{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos }^{2}}x}}=30\), then \(x\) is equa...

If 0xπ0\le x\le \pi and 81sin2x+81cos2x=30{{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos }^{2}}x}}=30, then xx is equal
to.
(a) π6\dfrac{\pi }{6}
(b) π3\dfrac{\pi }{3}
(c) 5π6\dfrac{5\pi }{6}
(d) 2π3\dfrac{2\pi }{3}
(e) All correct

Explanation

Solution

Since the question contains both sin2x{{\sin }^{2}}x and cos2x{{\cos }^{2}}x , we will write cos2x=1sin2x{{\cos}^{2}}x=1-{{\sin }^{2}}x so that we can get 81sin2x{{81}^{{{\sin }^{2}}x}} in both the terms in left hand side of the equation given in the question. Then substitute 81sin2x=t{{81}^{{{\sin }^{2}}x}}=t and solve the obtained quadratic equation.

In the question, we are given an equation 81sin2x+81cos2x=30.........(1){{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos}^{2}}x}}=30.........(1).
We have a trigonometric identity,
sin2x+cos2x=1 cos2x=1sin2x..........(2) \begin{aligned} & {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\\ & \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x..........\left( 2 \right) \\\ \end{aligned}
Substituting cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x from equation (2)\left( 2 \right) in equation (1)\left( 1 \right), we get,
81sin2x+811sin2x=30...........(3){{81}^{{{\sin }^{2}}x}}+{{81}^{1-{{\sin }^{2}}x}}=30...........\left( 3 \right)
We have a property of exponents,
abc=abac{{a}^{b-c}}=\dfrac{{{a}^{b}}}{{{a}^{c}}}, where a,b,cRa,b,c\in R.
Using this property in equation (3)\left( 3 \right) with a=81,b=1a=81,b=1 and c=sin2xc={{\sin }^{2}}x, we get,
81sin2x+81181sin2x=30...........(4){{81}^{{{\sin }^{2}}x}}+\dfrac{{{81}^{1}}}{{{81}^{{{\sin }^{2}}x}}}=30...........\left( 4 \right)
Now, let us assume 81sin2x=t{{81}^{{{\sin }^{2}}x}}=t. Substituting 81sin2x=t{{81}^{{{\sin }^{2}}x}}=t in equation
(4)\left( 4 \right), we get,
t+81t=30t+\dfrac{81}{t}=30
$\begin{aligned}

& \Rightarrow \dfrac{{{t}^{2}}+81}{t}=30 \\
& \Rightarrow {{t}^{2}}+81=30t \\
& \Rightarrow {{t}^{2}}-30t+81=0 \\
\end{aligned}$
Now, we have got a quadratic equation which can be easily solved by using the method of splitting the middle term. Solving this quadratic equation,

& {{t}^{2}}-3t-27t+81=0 \\\ & \Rightarrow t\left( t-3 \right)-27\left( t-3 \right)=0 \\\ & \Rightarrow \left( t-3 \right)\left( t-27 \right)=0 \\\ \end{aligned}$$ $\Rightarrow t=27$ or $t=3.........\left( 5 \right)$ Since we have earlier assumed ${{81}^{{{\sin }^{2}}x}}=t$, we can now again substitute $t={{81}^{{{\sin }^{2}}x}}$ in equation $\left( 5 \right)$. Substituting $t={{81}^{{{\sin }^{2}}x}}$ in equation $\left( 5 \right)$, we get, ${{81}^{{{\sin }^{2}}x}}=27$ or ${{81}^{{{\sin }^{2}}x}}=3$ Since, the above two equation contains exponential terms, in order to solve them, we first have to make their base equal. We know $81={{3}^{4}}$ and $27={{3}^{3}}$. Hence, substituting $81={{3}^{4}}$ and $27={{3}^{3}}$ in the above equation, we get, ${{\left( {{3}^{4}} \right)}^{{{\sin }^{2}}x}}={{3}^{3}}$ or ${{\left( {{3}^{4}} \right)}^{{{\sin }^{2}}x}}=3$ $\Rightarrow {{3}^{4{{\sin }^{2}}x}}={{3}^{3}}$ or ${{3}^{4}}^{{{\sin }^{2}}x}=3............\left( 6 \right)$ Now, the base of all the exponential terms in the above two equations in equation $\left( 6 \right)$ is the same. So, we can directly equate the powers of the terms on both the sides of equality. $\Rightarrow 4{{\sin }^{2}}x=3$ or $4{{\sin }^{2}}x=1$ $\Rightarrow {{\sin }^{2}}x=\dfrac{3}{4}$ or ${{\sin }^{2}}x=\dfrac{1}{4}$ $\Rightarrow \sin x=\pm \dfrac{\sqrt{3}}{2}$ or $\sin x=\pm \dfrac{1}{2}.........\left( 7 \right)$ In the question, it is given that $$0\le x\le \pi $$. For this domain, the value of $\sin x$ is positive . So, we can neglect $\sin x=-\dfrac{\sqrt{3}}{2}$ and $\sin x=-\dfrac{1}{2}$ as the solution of the equation $\left( 7 \right)$. Removing $\sin x=-\dfrac{\sqrt{3}}{2}$ and $\sin x=-\dfrac{1}{2}$ from equation $\left( 7 \right)$, we get, $\sin x=+\dfrac{\sqrt{3}}{2}$ or $\sin x=+\dfrac{1}{2}$ Solving the above equation in the domain $$0\le x\le \pi $$, we get, $x=\dfrac{\pi }{3},\dfrac{2\pi }{3}$ or $x=\dfrac{\pi }{6},\dfrac{5\pi }{6}$. So, the possible values of $x$ are $\dfrac{\pi }{3},\dfrac{\pi }{6},\dfrac{2\pi }{3},\dfrac{5\pi }{6}$. Therefore the final answer is option (e). Note: There is a possibility that one may commit a mistake if he/she does not consider $\dfrac{2\pi}{3}$ and $\dfrac{5\pi }{6}$ as possible solutions of the equation. But as it is mentioned in the question that $$0\le x\le \pi $$, we have to consider $\dfrac{2\pi }{3}$ and $\dfrac{5\pi }{6}$ as possible solutions of the equation.