Solveeit Logo

Question

Question: If \(0 <\alpha, \beta, \gamma < \dfrac{\pi }{2}\) such that \[\alpha + \beta + \gamma = \dfrac{\pi }...

If 0<α,β,γ<π20 <\alpha, \beta, \gamma < \dfrac{\pi }{2} such that α+β+γ=π2\alpha + \beta + \gamma = \dfrac{\pi }{2} and cotα,cotβ,cotγ\cot \alpha ,\cot \beta ,\cot \gamma are in A.P., then the value of cotαcotγ\cot \alpha \cot \gamma is:

Explanation

Solution

Arithmetic progression (AP) is a sequence whose terms increase or decrease by a fixed number. The fixed number is called the common difference. If ‘a’ is the first term and ‘d’ is a common difference, then AP can be written as a, a+d, a+2d,….a+(n-1)d,…..
For example, if x, y, z are in AP then it implies that x + z = 2y
Given: α+β+γ=π2\alpha + \beta + \gamma = \dfrac{\pi }{2} and cotα,cotβ,cotγ\cot \alpha ,\cot \beta ,\cot \gamma are in AP
To find: the value of cotαcotγ\cot \alpha \cot \gamma

Complete step-by-step solution:
Step 1: As we know that if three numbers, let say x, y and z, are in AP then it implies that x+z=2yx + z = 2y
Now according to the question cotα,cotβ,cotγ\cot \alpha ,\cot \beta ,\cot \gamma are in AP, therefore we can write
cotα+cotγ=2cotβ\cot \alpha + \cot \gamma = 2\cot \beta
Also, it is given that α+β+γ=π2\alpha + \beta + \gamma = \dfrac{\pi }{2} , we can also write it as
β=π2(α+β)\beta = \dfrac{\pi }{2} - (\alpha + \beta )
Now substituting the value of β\beta in equation cotα+cotγ=2cotβ\cot \alpha + \cot \gamma = 2\cot \beta , we get
cotα+cotγ=2cotβ\cot \alpha + \cot \gamma = 2\cot \beta
cotα+cotγ=2cot(π2(α+γ))\cot \alpha + \cot \gamma = 2\cot (\dfrac{\pi }{2} - (\alpha + \gamma ))
Step 2: Now from trigonometric properties we know that,
cot(π2x)=tanx\cot (\dfrac{\pi }{2} - x) = \tan x
Therefore, we have
cotα+cotγ=2cot(π2(α+γ))\cot \alpha + \cot \gamma = 2\cot (\dfrac{\pi }{2} - (\alpha + \gamma ))
cotα+cotγ=2tan(α+γ)\cot \alpha + \cot \gamma = 2\tan (\alpha + \gamma )
1tanα+1tanγ=2tan(α+γ)\dfrac{1}{{\tan \alpha }} + \dfrac{1}{{\tan \gamma }} = 2\tan (\alpha + \gamma )
Step 3: As we know that,
tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
Using the above trigonometric formula, we have
1tanα+1tanγ=2tan(α+γ)\dfrac{1}{{\tan \alpha }} + \dfrac{1}{{\tan \gamma }} = 2\tan (\alpha + \gamma )
1tanα+1tanγ=2tanα+tanγ1tanαtanγ\dfrac{1}{{\tan \alpha }} + \dfrac{1}{{\tan \gamma }} = 2\dfrac{{\tan \alpha + \tan \gamma }}{{1 - \tan \alpha \tan \gamma }}
On further simplification we get
tanα+tanγtanαtanγ=2tanα+tanγ1tanαtanγ\dfrac{{\tan \alpha + \tan \gamma }}{{\tan \alpha \tan \gamma }} = 2\dfrac{{\tan \alpha + \tan \gamma }}{{1 - \tan \alpha \tan \gamma }}
Canceling the term tanα+tanγ\tan \alpha + \tan \gamma from both sides, we get
1tanαtanγ=211tanαtanγ\dfrac{1}{{\tan \alpha \tan \gamma }} = 2\dfrac{1}{{1 - \tan \alpha \tan \gamma }}
1tanαtanγ=2tanαtanγ1 - \tan \alpha \tan \gamma = 2\tan \alpha \tan \gamma
Taking the term tanαtanγ\tan \alpha \tan \gamma on the right side, we get
1=2tanαtanγ+tanαtanγ1 = 2\tan \alpha \tan \gamma + \tan \alpha \tan \gamma
1=3tanαtanγ1 = 3\tan \alpha \tan \gamma
Now from trigonometric properties, we know that cotx=1tanx\cot x = \dfrac{1}{{\tan x}} , using this trigonometric property we can write
1=3tanαtanγ1 = 3\tan \alpha \tan \gamma
1=31cotαcotγ1 = 3\dfrac{1}{{\cot \alpha \cot \gamma }}
cotαcotγ=3\cot \alpha \cot \gamma = 3 (which is the required answer)
Hence, the value cotαcotγ\cot \alpha \cot \gamma is equal to 3.

Note: Always use trigonometric properties to convert the given equation into one identity (tan or cot or sin or cos etc) and also it reduces the equation in the simplest form.
If three numbers a, b and c are in AP then it implies that a+c=2ba + c = 2b.