Solveeit Logo

Question

Question: If \(0 = 9,{\rm{\;b}} = 4,{\rm{\;c}} = 8\) then the distance between the middle point of BC & the fo...

If 0=9,  b=4,  c=80 = 9,{\rm{\;b}} = 4,{\rm{\;c}} = 8 then the distance between the middle point of BC & the foot of the perpendicular from A is
(A) 2
(B)1
(C) 83\dfrac{8}{3}
(D) 73\dfrac{7}{3}

Explanation

Solution

We have to use the relation between the angle of the triangle and its sides. We know such a formula which is the cos rule in trigonometry.
cosc=a2+b2c22ab\cos {\rm{c}} = \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}} to find d. then find DE which is the distance between the middle point of BC & the foot of the perpendicular from A.

Complete step by step solution:
We have a triangle ABC where D is the mid-point of line BC & E is the point for the foot of a perpendicular from A.
Now, DC CD CE
12abcosc\dfrac{1}{2}{\rm{a}} - {\rm{b}}\cos {\rm{c}} =a2b(a2+b2c22ab) = \dfrac{{\rm{a}}}{2} - {\rm{b}}\left( {\dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}} \right)by using formula
cosc=a2+b2c22ab\cos {\rm{c}} = \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}
=a2a2+b2c22a= \dfrac{{\rm{a}}}{2} - \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{a}}}}
=a2a2b2+c22a= \dfrac{{{{\rm{a}}^2} - {{\rm{a}}^2} - {{\rm{b}}^2} + {{\rm{c}}^2}}}{{2{\rm{a}}}}
DE=c2b22a\therefore {\rm{DE}} = \dfrac{{{{\rm{c}}^2} - {{\rm{b}}^2}}}{{2{\rm{a}}}}
Now, we know that 0=9,  b=4,  c=80 = 9,{\rm{\;b}} = 4,{\rm{\;c}} = 8

DE=82422×9=641618\therefore {\rm{DE}} = \dfrac{{{8^2} - {4^2}}}{{2 \times 9}} = \dfrac{{64 - 16}}{{18}}
=4813=83= \dfrac{{48}}{{13}} = \dfrac{8}{3}

Note:
Length of AD is found using Stewart theorem.
i.e. AD2=2b2+2c2a24{\rm{A}}{{\rm{D}}^2} = \dfrac{{2{{\rm{b}}^2} + 2{{\rm{c}}^2} - {{\rm{a}}^2}}}{4}
Where AD is the median. Once AD is found, DE can be easily determined.