Solveeit Logo

Question

Question: If\(- \frac{1}{3}(1 - \tan^{2}x)^{3/2} + c\), then....

If13(1tan2x)3/2+c- \frac{1}{3}(1 - \tan^{2}x)^{3/2} + c, then.

A

23(1tan2x)2/3+c- \frac{2}{3}(1 - \tan^{2}x)^{2/3} + c

B

sin2xsin5xsin3x6mudx=\int_{}^{}\frac{\sin 2x}{\sin 5x\sin 3x}\mspace{6mu} dx =

C

logsin3xlogsin5x+c{logsin}3x - {logsin}5x + cany constant

D

13logsin3x+15logsin5x+c\frac{1}{3}{logsin}3x + \frac{1}{5}{logsin}5x + cany constant

Answer

13logsin3x+15logsin5x+c\frac{1}{3}{logsin}3x + \frac{1}{5}{logsin}5x + cany constant

Explanation

Solution

log(1+x2)+c\log(1 + x^{2}) + c

logetan1x+c\log e^{\tan^{- 1}x} + c

etan1x+ce^{\tan^{- 1}x} + c

tan1etan1x+c\tan^{- 1}e^{\tan^{- 1}x} + c

1x(logx)26mudx=\int_{}^{}\frac{1}{x(\log x)^{2}}\mspace{6mu} dx = is any constant and 1logx+c\frac{1}{\log x} + c.