Question
Question: If \(- \frac{\pi}{2} < x < \frac{\pi}{2}\), then the value of \({logsec}x\) is...
If −2π<x<2π, then the value of logsecx is
A
2coth−1(cosec22x−1)
B
2coth−1(cosec22x+1)
C
2cosech-1(cot22x−1)
D
2cosech-1(cot22x+1)
Answer
2coth−1(cosec22x−1)
Explanation
Solution
Let logsecx=y; ∴cosx1=e−y/2ey/2
By componendo and Dividendo rule, 1−cosx1+cosx=ey/2−e−y/2ey/2+e−y/2⇒ cot2(2x)=coth(2y)
⇒ y=2coth−1(cosec22x−1)