Solveeit Logo

Question

Question: If \(- \frac{\pi}{2} < x < \frac{\pi}{2}\), then the value of \({logsec}x\) is...

If π2<x<π2- \frac{\pi}{2} < x < \frac{\pi}{2}, then the value of logsecx{logsec}x is

A

2coth1(cosec2x21)2\coth^{- 1}\left( \text{cose}\text{c}^{2}\frac{x}{2} - 1 \right)

B

2coth1(cosec2x2+1)2{\cot h}^{- 1}\left( c\text{ose}\text{c}^{2}\frac{x}{2} + 1 \right)

C

2cosech-1(cot2x21)2\text{cosec}\text{h}^{\text{-1}}\left( \cot^{2}\frac{x}{2} - 1 \right)

D

2cosech-1(cot2x2+1)2\text{cosec}\text{h}^{\text{-1}}\left( \cot^{2}\frac{x}{2} + 1 \right)

Answer

2coth1(cosec2x21)2\coth^{- 1}\left( \text{cose}\text{c}^{2}\frac{x}{2} - 1 \right)

Explanation

Solution

Let logsecx=y{logsec}x = y; 1cosx=ey/2ey/2\therefore\frac{1}{\cos x} = \frac{e^{y/2}}{e^{- y/2}}

By componendo and Dividendo rule, 1+cosx1cosx=ey/2+ey/2ey/2ey/2\frac{1 + \cos x}{1 - \cos x} = \frac{e^{y/2} + e^{- y/2}}{e^{y/2} - e^{- y/2}}cot2(x2)=coth(y2)\cot^{2}\left( \frac{x}{2} \right) = {\cot h}\left( \frac{y}{2} \right)

y=2coth1(cosec2x21)y = 2{\cot h}^{- 1}\left( \text{cose}\text{c}^{2}\frac{x}{2} - 1 \right)