Solveeit Logo

Question

Question: If \(- 1 + \sqrt{- 3} = re^{i\theta},\) then θ is equal to...

If 1+3=reiθ,- 1 + \sqrt{- 3} = re^{i\theta}, then θ is equal to

A

π3\frac{\pi}{3}

B

π3- \frac{\pi}{3}

C

2π3\frac{2\pi}{3}

D

2π3- \frac{2\pi}{3}

Answer

2π3\frac{2\pi}{3}

Explanation

Solution

Sol Here1+3=reiθ- 1 + \sqrt{- 3} = re^{i\theta}1+i3=reiθ=rcosθ+irsinθ- 1 + i\sqrt{3} = re^{i\theta} = r\cos\theta + ir\sin\theta

Equating real and imaginary part, we get rcosθ=1r\cos\theta = - 1 and rsinθ=3r\sin\theta = \sqrt{3}

Hence tanθ=3\tan\theta = - \sqrt{3}tanθ=tan2π3\tan\theta = \tan\frac{2\pi}{3}θ=2π3\theta = \frac{2\pi}{3}.