Solveeit Logo

Question

Question: If : (-∞, 1\] →\(\left[ \frac { 1 } { 2 } , \infty \right)\), where f(x) = 2<sup>x(x-2)</sup> , f<su...

If : (-∞, 1] →[12,)\left[ \frac { 1 } { 2 } , \infty \right), where f(x) = 2x(x-2) , f-1(x) is given by

A

11+log2x1 - \sqrt { 1 + \log _ { 2 } x }

B

11log2x1 - \sqrt { 1 - \log _ { 2 } x }

C

1+1+log2x1 + \sqrt { 1 + \log _ { 2 } x }

D

1+1log2x1 + \sqrt { 1 - \log _ { 2 } x }

Answer

11+log2x1 - \sqrt { 1 + \log _ { 2 } x }

Explanation

Solution

f(f1(x))=2f1(x)(f1(x)2)f \left( f ^ { - 1 } ( x ) \right) = 2 ^ { f ^ { - 1 } ( x ) \left( f ^ { - 1 } ( x ) - 2 \right) }

⇒ (f−1(x))2 – 2f-1(x) – log2x = 0

⇒ f−1(x) = 2±4+4log2x2=1±1+log2x\frac { 2 \pm \sqrt { 4 + 4 \log _ { 2 } x } } { 2 } = 1 \pm \sqrt { 1 + \log _ { 2 } x }

But range of f−1(x) is (-∞, 1] thus