Solveeit Logo

Question

Question: Identify transformations of trigonometric expressions prove the following identities \(\dfrac{{{{\si...

Identify transformations of trigonometric expressions prove the following identities sin22a+4sin4a4sin2acos2a4sin22a4sin2a=tan4a\dfrac{{{{\sin }^2}2a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}} = {\tan ^4}a

Explanation

Solution

In the given question the RHS is given in tan4a{\tan ^4}a so we have to try to convert the LHS part into tan4a{\tan ^4}a or sin4acos4a\dfrac{{{{\sin }^4}a}}{{{{\cos }^4}a}}. For this apply sin2a=2sinacosa\sin 2a = 2\sin a\cos a or sin22a=4sin2acos2a{\sin ^2}2a = 4{\sin ^2}a{\cos ^2}a try to change 2a2a angles in aa . After that apply sin2a+cos2a=1{\sin ^2}a + {\cos ^2}a = 1 to proceed the result .

Complete step-by-step answer:
As in the RHS it is given that tan4a{\tan ^4}a so we have to try to convert the LHS part into tan4a{\tan ^4}a or sin4acos4a\dfrac{{{{\sin }^4}a}}{{{{\cos }^4}a}} .
For this we have to apply trigonometric transformation in the LHS part .
From LHS
sin22a+4sin4a4sin2acos2a4sin22a4sin2a\dfrac{{{{\sin }^2}2a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}
So we know that sin2a=2sinacosa\sin 2a = 2\sin a\cos a , apply this is in the numerator part , hence we get ,(2sinacosa)2+4sin4a4sin2acos2a4sin22a4sin2a\dfrac{{{{\left( {2\sin a\cos a} \right)}^2} + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}
4sin2acos2a+4sin4a4sin2acos2a4sin22a4sin2a\dfrac{{4{{\sin }^2}a{{\cos }^2}a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}
Now 4sin2acos2a4{\sin ^2}a{\cos ^2}a will cancel out ,
4sin4a4sin22a4sin2a\dfrac{{4{{\sin }^4}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}
4sin4a4(1sin2a)sin22a\dfrac{{4{{\sin }^4}a}}{{4(1 - {{\sin }^2}a) - {{\sin }^2}2a}}
Now in denominator , we know that sin2a+cos2a=1{\sin ^2}a + {\cos ^2}a = 1 or cos2a=1sin2a{\cos ^2}a = 1 - {\sin ^2}a apply this in the denominator
4sin4a4cos2asin22a\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a - {{\sin }^2}2a}}
Now we know that sin2a=2sinacosa\sin 2a = 2\sin a\cos a and on squaring sin22a=4sin2acos2a{\sin ^2}2a = 4{\sin ^2}a{\cos ^2}a
4sin4a4cos2a4sin2acos2a\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a - 4{{\sin }^2}a{{\cos }^2}a}}

Take 4cos2a4{\cos ^2}a common in the denominator ,
4sin4a4cos2a(1sin2a)\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a(1 - {{\sin }^2}a)}}
4sin4a4cos2a.cos2a\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a.{{\cos }^2}a}}

4sin4a4cos4a=tan4a\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^4}a}} = {\tan ^4}a
= RHS
Proved

Note: Students should remember trigonometric formulas, identities and transformation formulas for solving these types of problems.For these types of problems first we have to approach the solution by analysing the R.H.S of the given expression, Use the suitable identities , formula and simplify the L.H.S part to prove the given expression.