Solveeit Logo

Question

Mathematics Question on Exponents

Identify the greater number, wherever possible, in each of the following?

  1. 434 ^3 or 343^4
  2. 535 ^3 or 353^5
  3. 282 ^8 or 828^2
  4. 1002100^2 or 21002^{100}
  5. 2102 ^{10} or 10210^{2}
Answer

(i) 43=4×4×4=644^3 = 4 \times 4 \times 4 = 64
34=3×3×3×3=813^ 4 = 3 \times 3 \times 3 \times 3 = 81
Therefore, 34>4334 > 43


(ii) 53=5×5×5=1255^3 = 5 \times 5 \times 5 =125
35=3×3×3×3×3=2433^ 5 = 3 \times 3 \times 3 \times 3 \times 3 = 243
Therefore, 35>5335 > 53


(iii) 28=2×2×2×2×2×2×2×2=2562^8 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 256
82=8×8=648^ 2 = 8 \times 8 = 64
Therefore, 28>8228 > 82


(iv) 1002100^2 or 21002^{100}
210=2×2×2×2×2×2×2×2×2×2=10242^{ 10 }= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 1024
21002^{ 100} = 1024×1024×1024×1024×1024×1024×1024×1024×1024×10241024 \times 1024 \times 1024 \times 1024 \times 1024 \times 1024 \times 1024 \times 1024 \times 1024 \times 1024
1002=100×100=10000100^2 = 100 \times 100 = 10000
Therefore, 2100>10022^{100} > 100^2


(v) 2102^{10} and 10210^2
210=2×2×2×2×2×2×2×2×2×2=10242^{ 10 }= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 1024
102=10×10=10010^2 = 10 \times 10 = 100
Therefore, 210>1022^{10} > 10^2