Solveeit Logo

Question

Question: If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and $A = A^{-1}$ then x =...

If A=[x110]A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} and A=A1A = A^{-1} then x =

A

0

B

4

C

2

D

1

Answer

0

Explanation

Solution

The condition A=A1A=A^{-1} implies A2=IA^2=I. Calculate A2A^2 by multiplying AA by itself. Equate the resulting matrix to the identity matrix II. Compare the corresponding elements of the matrices to form equations. Solve these equations for xx. All equations consistently yield x=0x=0.

Alternatively, we can calculate A1A^{-1} directly. For a 2x2 matrix M=[abcd]M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, its inverse is M1=1det(M)[dbca]M^{-1} = \frac{1}{\det(M)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. First, find the determinant of AA: det(A)=(x)(0)(1)(1)=01=1\det(A) = (x)(0) - (1)(1) = 0 - 1 = -1.

Now, calculate A1A^{-1}: A1=11[011x]=[011x]A^{-1} = \frac{1}{-1} \begin{bmatrix} 0 & -1 \\ -1 & x \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -x \end{bmatrix}.

Given A=A1A = A^{-1}: [x110]=[011x]\begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -x \end{bmatrix}

Comparing the corresponding elements: x=0x = 0