Solveeit Logo

Question

Question: A carnot engine, efficiency 30% and temperature of sink 300 K to increase efficiency up to 70% calcu...

A carnot engine, efficiency 30% and temperature of sink 300 K to increase efficiency up to 70% calculate change in temperature of source.

A

550 K

B

572 K

C

590 K

D

600 K

Answer

572 K

Explanation

Solution

The efficiency of a Carnot engine is given by the formula:

η=1TsinkTsource\eta = 1 - \frac{T_{sink}}{T_{source}}

where η\eta is the efficiency, TsinkT_{sink} is the temperature of the cold reservoir (sink), and TsourceT_{source} is the temperature of the hot reservoir (source). All temperatures must be in Kelvin.

Given: Initial efficiency (η1\eta_1) = 30% = 0.30 Temperature of sink (TsinkT_{sink}) = 300 K

Step 1: Calculate the initial temperature of the source (Tsource1T_{source1}) Using the efficiency formula for the initial state:

0.30=1300Tsource10.30 = 1 - \frac{300}{T_{source1}}

300Tsource1=10.30\frac{300}{T_{source1}} = 1 - 0.30

300Tsource1=0.70\frac{300}{T_{source1}} = 0.70

Tsource1=3000.70=30007KT_{source1} = \frac{300}{0.70} = \frac{3000}{7} \, K

Step 2: Calculate the final temperature of the source (Tsource2T_{source2}) The efficiency is increased to 70% (η2\eta_2 = 0.70). The temperature of the sink remains constant at 300 K. Using the efficiency formula for the final state:

0.70=1300Tsource20.70 = 1 - \frac{300}{T_{source2}}

300Tsource2=10.70\frac{300}{T_{source2}} = 1 - 0.70

300Tsource2=0.30\frac{300}{T_{source2}} = 0.30

Tsource2=3000.30=30003=1000KT_{source2} = \frac{300}{0.30} = \frac{3000}{3} = 1000 \, K

Step 3: Calculate the change in temperature of the source Change in temperature of source (ΔTsource\Delta T_{source}) = Tsource2Tsource1T_{source2} - T_{source1}

ΔTsource=100030007\Delta T_{source} = 1000 - \frac{3000}{7}

To subtract, find a common denominator:

ΔTsource=1000×7730007\Delta T_{source} = \frac{1000 \times 7}{7} - \frac{3000}{7}

ΔTsource=700030007\Delta T_{source} = \frac{7000 - 3000}{7}

ΔTsource=40007K\Delta T_{source} = \frac{4000}{7} \, K

Now, convert the fraction to a decimal:

ΔTsource571.42857K\Delta T_{source} \approx 571.42857 \, K

Comparing this value with the given options, the calculated value 571.42857 K is closest to 572 K.