Solveeit Logo

Question

Question: $$I(\alpha) = \int_0^1 \frac{x^\alpha - 1}{lnx}dx$$...

I(α)=01xα1lnxdxI(\alpha) = \int_0^1 \frac{x^\alpha - 1}{lnx}dx

Answer

I(α)=ln(α+1)I(\alpha)= \ln(\alpha+1)

Explanation

Solution

Solution:

Given

I(α)=01xα1lnxdx.I(\alpha) = \int_0^1 \frac{x^\alpha - 1}{\ln x}\,dx.
  1. Differentiate under the integral sign:
    Differentiate I(α)I(\alpha) with respect to α\alpha:

    I(α)=ddα01xα1lnxdx=01α(xα1lnx)dx.I'(\alpha) = \frac{d}{d\alpha}\int_0^1 \frac{x^\alpha - 1}{\ln x}\,dx = \int_0^1 \frac{\partial}{\partial \alpha}\left(\frac{x^\alpha - 1}{\ln x}\right)dx.
  2. Compute the derivative inside the integral:
    Since

    αxα=xαlnx,\frac{\partial}{\partial \alpha} x^\alpha = x^\alpha \ln x,

    we have:

    α(xα1lnx)=xαlnxlnx=xα.\frac{\partial}{\partial \alpha}\left(\frac{x^\alpha - 1}{\ln x}\right) = \frac{x^\alpha \ln x}{\ln x} = x^\alpha.

    Thus,

    I(α)=01xαdx.I'(\alpha) = \int_0^1 x^\alpha\,dx.
  3. Evaluate the resulting integral:

    01xαdx=[xα+1α+1]01=1α+1.\int_0^1 x^\alpha\,dx = \left[\frac{x^{\alpha+1}}{\alpha+1}\right]_0^1 = \frac{1}{\alpha+1}.

    So,

    I(α)=1α+1.I'(\alpha) = \frac{1}{\alpha+1}.
  4. Integrate with respect to α\alpha:

    I(α)=1α+1dα=lnα+1+C.I(\alpha) = \int \frac{1}{\alpha+1}\,d\alpha = \ln |\alpha+1| + C.

    Since α+1>0\alpha+1 > 0, we have:

    I(α)=ln(α+1)+C.I(\alpha) = \ln(\alpha+1) + C.
  5. Determine the constant CC:
    Evaluate at α=0\alpha=0:

    I(0)=0111lnxdx=0.I(0) = \int_0^1 \frac{1-1}{\ln x}\,dx = 0.

    Hence,

    0=ln(1)+CC=0.0 = \ln(1) + C \quad \Rightarrow \quad C = 0.

Explanation of the Core Solution:
Differentiate under the integral sign to find I(α)I'(\alpha) which simplifies to 01xαdx=1α+1\int_0^1 x^\alpha dx = \frac{1}{\alpha+1}. Integrate back to get I(α)=ln(α+1)+CI(\alpha)=\ln(\alpha+1) + C and use the condition I(0)=0I(0)=0 to find C=0C=0.