Question
Question: $$I(\alpha) = \int_0^1 \frac{x^\alpha - 1}{lnx}dx$$...
I(α)=∫01lnxxα−1dx
Answer
I(α)=ln(α+1)
Explanation
Solution
Solution:
Given
I(α)=∫01lnxxα−1dx.-
Differentiate under the integral sign:
I′(α)=dαd∫01lnxxα−1dx=∫01∂α∂(lnxxα−1)dx.
Differentiate I(α) with respect to α: -
Compute the derivative inside the integral:
∂α∂xα=xαlnx,
Sincewe have:
∂α∂(lnxxα−1)=lnxxαlnx=xα.Thus,
I′(α)=∫01xαdx. -
Evaluate the resulting integral:
∫01xαdx=[α+1xα+1]01=α+11.So,
I′(α)=α+11. -
Integrate with respect to α:
I(α)=∫α+11dα=ln∣α+1∣+C.Since α+1>0, we have:
I(α)=ln(α+1)+C. -
Determine the constant C:
I(0)=∫01lnx1−1dx=0.
Evaluate at α=0:Hence,
0=ln(1)+C⇒C=0.
Explanation of the Core Solution:
Differentiate under the integral sign to find I′(α) which simplifies to ∫01xαdx=α+11. Integrate back to get I(α)=ln(α+1)+C and use the condition I(0)=0 to find C=0.