Solveeit Logo

Question

Question: \(i^{1 + 3 + 5 + ... + (2n + 1)}\) will be purely imaginary, if...

i1+3+5+...+(2n+1)i^{1 + 3 + 5 + ... + (2n + 1)} will be purely imaginary, if

A

x+1x=2cosθ,x + \frac{1}{x} = 2\cos\theta,

B

cosθ+isinθ\cos\theta + i\sin\theta

C

cosθisinθ\cos\theta - i\sin\theta

D

None of these

[Where cosθ±isinθ\cos\theta \pm i\sin\theta is an integer]

Answer

cosθisinθ\cos\theta - i\sin\theta

Explanation

Solution

(x+iy)+(1i)=0(x + iy) + (1 - i) = 0 will be purely imaginary, if the real part vanishes, i.e., x+1=0x + 1 = 0

y=1\mathbf{y = 1} (only if \therefore be real)

(2sinθ2)1{sinθ2+i.2cosθ2}\left( 2\sin\frac{\theta}{2} \right)^{- 1}\left\{ \sin\frac{\theta}{2} + i.2\cos\frac{\theta}{2} \right\}

\because