Solveeit Logo

Question

Mathematics Question on applications of integrals

I(x)=x2(xsec2x+tanx)(xtanx+1)2dxI(x) = \int \frac{x^2(xsec^2x + tanx)}{(xtanx+1)^2} dx. If I(0)=1I(0)=1 then I(π4)I(\frac{\pi}{4}) is equal to

A

π24π+16+2ln(π+442)+1-\frac{\pi^2}{4\pi+16}+2ln(\frac{\pi+4}{4\sqrt2})+1

B

π24π+162ln(π+442)+1\frac{\pi^2}{4\pi+16}-2ln(\frac{\pi+4}{4\sqrt2})+1

C

π2π+4+2ln(π+12)+1-\frac{\pi^2}{\pi+4}+2ln(\frac{\pi+1}{\sqrt2})+1

D

π2π+16+2ln(π+142)+1\frac{\pi^2}{\pi+16}+2ln(\frac{\pi+1}{4\sqrt2})+1

Answer

π24π+16+2ln(π+442)+1-\frac{\pi^2}{4\pi+16}+2ln(\frac{\pi+4}{4\sqrt2})+1

Explanation

Solution

Using integration by parts
I(x)=x2.(1)xtanx+12x.(1)xtanx+1dxI(x) = x^2.\frac{(-1)}{x\:tanx+1}\:-\:\int\:2x.\frac{(-1)}{x\:tanx+1}dx
=x2xtanx+1+2xcosxxsinx+cosxdx=\,-\frac{x^2}{x\:tanx+1}+2\int\frac{x\:cos\,x}{x\:sin\,x+cos\,x}dx
I(x)=x2xtanx+1+2lnxsinx+cosx+c\Rightarrow I(x)=-\frac{x^2}{x\:tan\,x+1}+2ln|x\:sin\,x+cos\,x|+c
put x=0x=0
c=1c=1
I(π4)=π216π4+1+2ln(π4+12)+1\therefore I(\frac{\pi}{4})=\frac{\frac{-\pi^2}{16}}{\frac{\pi}{4}+1}+2ln(\frac{\frac{\pi}{4}+1}{\sqrt{2}})+1
I(π4)=π24π+16+2ln(π+442)+1I(\frac{\pi}{4})= -\frac{\pi^2}{4\pi+16}+2ln(\frac{\pi+4}{4\sqrt{2}})+1

So, the correct answer is (A): π24π+16+2ln(π+442)+1-\frac{\pi^2}{4\pi+16}+2ln(\frac{\pi+4}{4\sqrt2})+1