Question
Mathematics Question on applications of integrals
I(x)=∫(xtanx+1)2x2(xsec2x+tanx)dx. If I(0)=1 then I(4π) is equal to
A
−4π+16π2+2ln(42π+4)+1
B
4π+16π2−2ln(42π+4)+1
C
−π+4π2+2ln(2π+1)+1
D
π+16π2+2ln(42π+1)+1
Answer
−4π+16π2+2ln(42π+4)+1
Explanation
Solution
Using integration by parts
I(x)=x2.xtanx+1(−1)−∫2x.xtanx+1(−1)dx
=−xtanx+1x2+2∫xsinx+cosxxcosxdx
⇒I(x)=−xtanx+1x2+2ln∣xsinx+cosx∣+c
put x=0
c=1
∴I(4π)=4π+116−π2+2ln(24π+1)+1
I(4π)=−4π+16π2+2ln(42π+4)+1
So, the correct answer is (A): −4π+16π2+2ln(42π+4)+1