Solveeit Logo

Question

Question: (i) What is the value of \[{\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ }\] ? (ii) If \({\text{x = ...

(i) What is the value of sin229+sin261{\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } ?
(ii) If x = asinθ+bcosθ{\text{x = a}}\sin \theta + {\text{b}}\cos \theta and y = acosθbsinθ{\text{y = a}}\cos \theta - {\text{b}}\sin \theta then find the value of x2 + y2{{\text{x}}^2}{\text{ + }}{{\text{y}}^2}?
(iii) If x = acosθ{\text{x = acos}}\theta andy = bsinθ{\text{y = b}}\sin \theta then find the value of b2x2 + a2y2{{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2}.

Explanation

Solution

(i) We can write cosθ=sin(90θ)\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right) and then use trigonometric identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 and you’ll get the answer. (ii) First square the values of x and y then add them. Use trigonometric identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 and you’ll get the answer.(iii) You can multiply b to value of x and a to value of y. Square and add them. You’ll get the answer.

Complete step-by-step answer:
(i)We have to find the value of sin229+sin261{\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ }.
sin229+sin261=sin229+sin2(9061)\Rightarrow {\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = {\sin ^2}{29^ \circ } + {\sin ^2}\left( {{{90}^ \circ } - {{61}^ \circ }} \right)
We know that cosθ=sin(90θ)\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right). So we can write cos29=sin(9061)\cos {29^ \circ } = \sin \left( {{{90}^ \circ } - {{61}^ \circ }} \right)
sin229+sin261=sin229+cos229\Rightarrow {\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = {\sin ^2}{29^ \circ } + {\cos ^2}{29^ \circ }
We know that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.Hereθ=29\theta = {29^ \circ } , so on putting the value we get-
sin229+sin261=sin229+cos229=1\Rightarrow {\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = {\sin ^2}{29^ \circ } + {\cos ^2}{29^ \circ } = 1
Answer-Hence the answer is sin229+sin261=1{\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = 1
(ii)Given, x = asinθ+bcosθ{\text{x = a}}\sin \theta + {\text{b}}\cos \theta --- (I)
y = acosθbsinθ{\text{y = a}}\cos \theta - {\text{b}}\sin \theta ---- (II)
We have to find the value of x2 + y2{{\text{x}}^2}{\text{ + }}{{\text{y}}^2}. So first we square eq.(I) and (II) then add them.
On squaring them, we get-

x2 = (asinθ+bcosθ)2 x2 = a2sin2θ+b2cos2θ+2absinθcosθ  \Rightarrow {{\text{x}}^2}{\text{ = }}{\left( {{\text{a}}\sin \theta + {\text{b}}\cos \theta } \right)^2} \\\ \Rightarrow {{\text{x}}^2}{\text{ = }}{{\text{a}}^2}{\sin ^2}\theta + {{\text{b}}^2}{\cos ^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta \\\

As (a + b)2 = a2+b2+2ab{\left( {{\text{a + b}}} \right)^2}{\text{ = }}{{\text{a}}^2} + {{\text{b}}^2} + {\text{2ab}}
And y2 = (acosθ+bsinθ)2{{\text{y}}^2}{\text{ = }}{\left( {{\text{a}}\cos \theta + {\text{bsin}}\theta } \right)^2}
As (a + b)2 = a2+b2+2ab{\left( {{\text{a + b}}} \right)^2}{\text{ = }}{{\text{a}}^2} + {{\text{b}}^2} + {\text{2ab}}, on using the formula-
y2 = a2cos2θ+b2sin2θ+2absinθcosθ\Rightarrow {{\text{y}}^2}{\text{ = }}{{\text{a}}^2}{\cos ^2}\theta + {{\text{b}}^2}{\text{si}}{{\text{n}}^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta
Now putting the values in x2 + y2{{\text{x}}^2}{\text{ + }}{{\text{y}}^2}, we get
x2 + y2=a2sin2θ+b2cos2θ+2absinθcosθ+b2sin2θ+a2cos2θ+2absinθcosθ\Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2}{\sin ^2}\theta + {{\text{b}}^2}{\cos ^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta + {{\text{b}}^2}{\sin ^2}\theta + {{\text{a}}^2}{\cos ^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta
On separating common terms and simplifying we get,

x2 + y2=a2(sin2θ+cos2θ)+b2(sin2θ+cos2θ)+2absinθcosθ+2absinθcosθ x2 + y2=a2+b2+4absinθcosθ  \Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2}\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) + {{\text{b}}^2}\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) + {\text{2absin}}\theta {\text{cos}}\theta + {\text{2absin}}\theta {\text{cos}}\theta \\\ \Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 4{\text{absin}}\theta {\text{cos}}\theta \\\

[As sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1]
x2 + y2=a2+b2+4absinθcosθ\Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 4{\text{absin}}\theta {\text{cos}}\theta
We know that2sinθcosθ=sin2θ{\text{2sin}}\theta {\text{cos}}\theta = \sin 2\theta , so we get,
Answerx2 + y2=a2+b2+2absin2θ\Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 2{\text{absin2}}\theta
(iii)Given, x = acosθ{\text{x = acos}}\theta -- (i)
Andy = bsinθ{\text{y = b}}\sin \theta --- (ii)
We have to find the value of b2x2 + a2y2{{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2}.
On multiplying eq. (i) with b and eq. (ii) with a and squaring both eq., we get
(bx)2 = (abcosθ)2b2x2 = a2b2 cos2θ\Rightarrow {\left( {{\text{bx}}} \right)^2}{\text{ = }}{\left( {{\text{ab}}\cos \theta } \right)^2} \Rightarrow {{\text{b}}^2}{{\text{x}}^2}{\text{ = }}{{\text{a}}^2}{{\text{b}}^2}{\text{ co}}{{\text{s}}^2}\theta --- (I)
(ay)2=(basinθ)2a2y2 = a2b2 sis2θ\Rightarrow {\left( {{\text{ay}}} \right)^2} = {\left( {{\text{ba}}\sin \theta } \right)^2} \Rightarrow {{\text{a}}^2}{{\text{y}}^2}{\text{ = }}{{\text{a}}^2}{{\text{b}}^2}{\text{ si}}{{\text{s}}^2}\theta -- (II)
On adding eq. (I) and (II), we get-
b2x2 + a2y2=a2b2(sin2θ+cos2θ) \Rightarrow {{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2} = {{\text{a}}^2}{{\text{b}}^2}\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right){\text{ }}
We know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin^2}\theta = 1. So we get,
Answerb2x2 + a2y2=a2b2 \Rightarrow {{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2} = {{\text{a}}^2}{{\text{b}}^2}

Note: On solving question (ii) student may go wrong if they leave the answer as x2 + y2=a2+b2+4absinθcosθ\Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 4{\text{absin}}\theta {\text{cos}}\theta which is wrong as the equation can be further simplified by using the formula 2sinθcosθ=sin2θ{\text{2sin}}\theta {\text{cos}}\theta = \sin 2\theta . We have to write the answers of the questions in a simplified form.