Solveeit Logo

Question

Question: (i) Solve \({{x}^{2}}\dfrac{dy}{dx}={{x}^{2}}+xy+{{y}^{2}}\) (ii) Solve \({{y}^{2}}dx+\left( xy+{{...

(i) Solve x2dydx=x2+xy+y2{{x}^{2}}\dfrac{dy}{dx}={{x}^{2}}+xy+{{y}^{2}}
(ii) Solve y2dx+(xy+x2)dy=0{{y}^{2}}dx+\left( xy+{{x}^{2}} \right)dy=0
(iii) Solve x2ydx(x3+y3)dy=0{{x}^{2}}ydx-\left( {{x}^{3}}+{{y}^{3}} \right)dy=0
(iv) Solve (x2y2)dx+2xydy=0\left( {{x}^{2}}-{{y}^{2}} \right)dx+2xydy=0

Explanation

Solution

While solving this type of questions we should simplify the given equations from the questions and perform required integrations and differentiations on them using the formulae like xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} when n1n\ne -1 , when n=1n=-1 we will apply the formula x1dx=logx\int{{{x}^{-1}}dx=\log x} . Take each part and rearrange the terms such that dx is on one side and dy is on one side of the equation. Then integrate both sides by applying the above mentioned formula where required and simplify to get the answer.

Complete answer:
For answering this question we will solve each part step by step.
(i) For the first part of the question let us simplify the given equation
x2dydx=x2+xy+y2{{x}^{2}}\dfrac{dy}{dx}={{x}^{2}}+xy+{{y}^{2}}
After rearranging we will get x2dy=(x2+xy+y2)dx{{x}^{2}}dy=\left( {{x}^{2}}+xy+{{y}^{2}} \right)dx
By performing integration on both sides we will get x2dy=(x2+xy+y2)dx\int{{{x}^{2}}dy}=\int{\left( {{x}^{2}}+xy+{{y}^{2}} \right)dx}
By applying the formulae xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} for the above equation we get
x2y=x33+x22y+xy2{{x}^{2}}y=\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{2}}}{2}y+x{{y}^{2}}
By simplifying this we will get
6x2y=2x3+3x2y+6xy2 2x33x2y+6xy2=0 \begin{aligned} & 6{{x}^{2}}y=2{{x}^{3}}+3{{x}^{2}}y+6x{{y}^{2}} \\\ & \Rightarrow 2{{x}^{3}}-3{{x}^{2}}y+6x{{y}^{2}}=0 \\\ \end{aligned}
The result is 2x33x2y+6xy2=02{{x}^{3}}-3{{x}^{2}}y+6x{{y}^{2}}=0
(ii) For the second part of the question let us simplify the given equation
y2dx+(xy+x2)dy=0{{y}^{2}}dx+\left( xy+{{x}^{2}} \right)dy=0
After rearranging we will get y2dx=(xy+x2)dy{{y}^{2}}dx=-\left( xy+{{x}^{2}} \right)dy
By performing integration on both sides we will get y2dx=(xy+x2)dy\int{{{y}^{2}}dx}=\int{-\left( xy+{{x}^{2}} \right)dy}
By applying the formulae xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} for the above equation we get
y2x=(xy22+x2y){{y}^{2}}x=-\left( x\dfrac{{{y}^{2}}}{2}+{{x}^{2}}y \right)
By simplifying this we will get
y2x=(xy22+x2y) 2y2x+xy2+2x2y=0 3xy2+2x2y=0 \begin{aligned} & {{y}^{2}}x=-\left( x\dfrac{{{y}^{2}}}{2}+{{x}^{2}}y \right) \\\ & \Rightarrow 2{{y}^{2}}x+x{{y}^{2}}+2{{x}^{2}}y=0 \\\ & \Rightarrow 3x{{y}^{2}}+2{{x}^{2}}y=0 \\\ \end{aligned}
The result is 3xy2+2x2y=03x{{y}^{2}}+2{{x}^{2}}y=0
(iii) For the third part of the question let us simplify the given equation
x2ydx(x3+y3)dy=0{{x}^{2}}ydx-\left( {{x}^{3}}+{{y}^{3}} \right)dy=0
After rearranging we will get x2ydx=(x3+y3)dy{{x}^{2}}ydx=\left( {{x}^{3}}+{{y}^{3}} \right)dy
By performing integration on both sides we will get x2ydx=(x3+y3)dy\int{{{x}^{2}}ydx}=\int{\left( {{x}^{3}}+{{y}^{3}} \right)dy}
By applying the formulae xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} for the above equation we get
x33y=x3y+y44\dfrac{{{x}^{3}}}{3}y={{x}^{3}}y+\dfrac{{{y}^{4}}}{4}
By simplifying this we will get
x33y=x3y+y44 4x3y=12x3y+3y4 \begin{aligned} & \dfrac{{{x}^{3}}}{3}y={{x}^{3}}y+\dfrac{{{y}^{4}}}{4} \\\ & \Rightarrow 4{{x}^{3}}y=12{{x}^{3}}y+3{{y}^{4}} \\\ \end{aligned}
The result is 3y48x3y=03{{y}^{4}}-8{{x}^{3}}y=0
(iv) For the fourth part of the question let us simplify the given equation
(x2y2)dx+2xydy=0\left( {{x}^{2}}-{{y}^{2}} \right)dx+2xydy=0
After rearranging we will get (x2y2)dx=2xydy\left( {{x}^{2}}-{{y}^{2}} \right)dx=-2xydy
By performing integration on both sides we will get (x2y2)dx=2xydy\int{\left( {{x}^{2}}-{{y}^{2}} \right)dx}=\int{-2xydy}
By applying the formulae xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} for the above equation and simplifying we get
(x2y2)dx=2xydy x33xy2=2xy22 x33=xy2+xy2 x33=0 x=0 \begin{aligned} & \int{\left( {{x}^{2}}-{{y}^{2}} \right)dx}=\int{-2xydy} \\\ & \dfrac{{{x}^{3}}}{3}-x{{y}^{2}}=-2x\dfrac{{{y}^{2}}}{2} \\\ & \Rightarrow \dfrac{{{x}^{3}}}{3}=-x{{y}^{2}}+x{{y}^{2}} \\\ & \Rightarrow \dfrac{{{x}^{3}}}{3}=0 \\\ & \Rightarrow x=0 \\\ \end{aligned}
The result is x=0x=0
Hence, we conclude that
(i) x2dydx=x2+xy+y2{{x}^{2}}\dfrac{dy}{dx}={{x}^{2}}+xy+{{y}^{2}}
2x33x2y+6xy2=0\Rightarrow 2{{x}^{3}}-3{{x}^{2}}y+6x{{y}^{2}}=0
(ii) y2dx+(xy+x2)dy=0{{y}^{2}}dx+\left( xy+{{x}^{2}} \right)dy=0
3xy2+2x2y=0\Rightarrow 3x{{y}^{2}}+2{{x}^{2}}y=0
(iii) x2ydx(x3+y3)dy=0{{x}^{2}}ydx-\left( {{x}^{3}}+{{y}^{3}} \right)dy=0
3y48x3y=0\Rightarrow 3{{y}^{4}}-8{{x}^{3}}y=0
(iv) (x2y2)dx+2xydy=0\left( {{x}^{2}}-{{y}^{2}} \right)dx+2xydy=0
x=0\Rightarrow x=0

Note:
While solving the questions of above type we should remember that xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}formulae applies only when n1n\ne 1. For n=1n=-1 it will be x1dx=logx\int{{{x}^{-1}}dx=\log x}. When we integrate an expression with respect to yy then xx will be considered as a constant and we take it out from the integration as it is constant, same can be done in the case of differentiation. The first step of rearranging the terms must be done carefully such that the overall equation doesn’t change, i.e. be careful while opening the brackets and transposing terms. We just have to take dx and dy terms together and not x and y terms together.