Solveeit Logo

Question

Question: $\sin^2 A \cos^2 B + \cos^2 A \sin^2 B + \cos^2 A \cos^2 B + \sin^2 A \sin^2 B = 1$...

sin2Acos2B+cos2Asin2B+cos2Acos2B+sin2Asin2B=1\sin^2 A \cos^2 B + \cos^2 A \sin^2 B + \cos^2 A \cos^2 B + \sin^2 A \sin^2 B = 1

Answer

The given equation is an identity, true for all AA and BB.

Explanation

Solution

Solution Explanation:

Group the terms as follows:

sin2Acos2B+sin2Asin2B=sin2A(cos2B+sin2B)=sin2A(1)=sin2A\sin^2A\cos^2B + \sin^2A\sin^2B = \sin^2A (\cos^2B+\sin^2B) = \sin^2A(1)=\sin^2A cos2Asin2B+cos2Acos2B=cos2A(sin2B+cos2B)=cos2A(1)=cos2A\cos^2A\sin^2B + \cos^2A\cos^2B = \cos^2A (\sin^2B+\cos^2B) = \cos^2A(1)=\cos^2A

Thus, the entire expression becomes:

sin2A+cos2A=1\sin^2A + \cos^2A = 1

which is an identity valid for all values of AA and BB.