Question
Question: $\sin^2 A \cos^2 B + \cos^2 A \sin^2 B + \cos^2 A \cos^2 B + \sin^2 A \sin^2 B = 1$...
sin2Acos2B+cos2Asin2B+cos2Acos2B+sin2Asin2B=1
Answer
The given equation is an identity, true for all A and B.
Explanation
Solution
Solution Explanation:
Group the terms as follows:
sin2Acos2B+sin2Asin2B=sin2A(cos2B+sin2B)=sin2A(1)=sin2A cos2Asin2B+cos2Acos2B=cos2A(sin2B+cos2B)=cos2A(1)=cos2AThus, the entire expression becomes:
sin2A+cos2A=1which is an identity valid for all values of A and B.