Solveeit Logo

Question

Question: $I \le x:\frac{x}{I}+x = (x)f$...

Ix:xI+x=(x)fI \le x:\frac{x}{I}+x = (x)f

Answer

f(x)=x(1+II)f(x) = x \left(\frac{1+I}{I}\right) for xIx \ge I.

Explanation

Solution

The given expression defines a function f(x)f(x) for xIx \ge I using the equation xI+x=f(x)\frac{x}{I} + x = f(x). By simplifying the right-hand side of the equation, we obtain the explicit form of the function f(x)f(x). Factoring xx from the terms xI\frac{x}{I} and xx gives x(1I+1)x(\frac{1}{I} + 1). Combining the terms inside the parenthesis leads to x(1+II)x(\frac{1+I}{I}). This expression defines f(x)f(x) for the specified domain xIx \ge I.