Solveeit Logo

Question

Question: I = \(\int_{}^{}\left( \frac{1 + \cos 2x}{2} \right)^{2}\)dx = \(\frac { 1 } { 4 }\) \(\int_{}^{}{(...

I = (1+cos2x2)2\int_{}^{}\left( \frac{1 + \cos 2x}{2} \right)^{2}dx

= 14\frac { 1 } { 4 } (1+cos22x+2cos2x)\int_{}^{}{(1 + \cos^{2}2x + 2\cos 2x)}dx

= 14\frac { 1 } { 4 } (1+1+cos4x2+2cos2x)\int_{}^{}\left( 1 + \frac{1 + \cos 4x}{2} + 2\cos 2x \right)dx

= 18\frac { 1 } { 8 } (3+cos4x+4cos2x)dx\int_{}^{}{(3 + \cos 4x + 4\cos 2x)dx}

= 3x8\frac{3x}{8}+ sin4x32\frac{\sin 4x}{32}+ 4sin2x8×2\frac{4\sin 2x}{8 \times 2}

A

3n\frac{3}{n}ln(xnxn+1)\left( \frac{x^{n}}{x^{n} + 1} \right)

B

1n\frac{1}{n}ln (xnxn+1)\left( \frac{x^{n}}{x^{n} + 1} \right)

C

3n\frac{3}{n}ln(xn+1xn)\left( \frac{x^{n} + 1}{x^{n}} \right)

D

3n\frac{\mathbf{3}}{\mathbf{n}} ln (xn+1xn)\left( \frac{\mathbf{x}^{\mathbf{n}}\mathbf{+ 1}}{\mathbf{x}^{\mathbf{n}}} \right)

Answer

3n\frac{3}{n}ln(xnxn+1)\left( \frac{x^{n}}{x^{n} + 1} \right)

Explanation

Solution

dx3x3(xn+1)\int \frac { d x ^ { 3 } } { x ^ { 3 } \left( x ^ { n } + 1 \right) } = 3 x2dxx3(xn+1)\int_{}^{}\frac{x^{2}dx}{x^{3}(x^{n} + 1)}= 3 dxx(xn+1)\int_{}^{}\frac{dx}{x(x^{n} + 1)}

= 3dx = dtt(t+1)\int_{}^{}\frac{dt}{t(t + 1)}

= (t+1)tt(t+1)\int_{}^{}\frac{(t + 1) - t}{t(t + 1)}dt =(1t1t+1)\int_{}^{}\left( \frac{1}{t} - \frac{1}{t + 1} \right)dt

=3n\frac{3}{n} (lnt – ln (t + 1)) + c

=3n\frac{3}{n}ln (tt+1)\left( \frac{t}{t + 1} \right)+ C