Solveeit Logo

Question

Question: $\int_{0}^{2\pi} \left( \sum_{n=0}^{\infty} \frac{\cos(2^n x)}{2^n} \right)^2 dx$...

02π(n=0cos(2nx)2n)2dx\int_{0}^{2\pi} \left( \sum_{n=0}^{\infty} \frac{\cos(2^n x)}{2^n} \right)^2 dx

Answer

4π3\frac{4\pi}{3}

Explanation

Solution

The integral of the square of a uniformly convergent series can be computed by squaring the series term-by-term and then integrating term-by-term. The integral 02πcos(kx)cos(mx)dx\int_{0}^{2\pi} \cos(kx) \cos(mx) dx is zero if kmk \ne m and π\pi if k=mk=m (for k,mk, m positive integers). Applying this to the squared series n,mcos(2nx)cos(2mx)2n+m\sum_{n,m} \frac{\cos(2^n x) \cos(2^m x)}{2^{n+m}}, only terms where n=mn=m survive, leading to n=0π22n\sum_{n=0}^{\infty} \frac{\pi}{2^{2n}}. This sum is a geometric series πn=0(1/4)n=π/(11/4)=4π/3\pi \sum_{n=0}^{\infty} (1/4)^n = \pi/(1-1/4) = 4\pi/3.