Question
Question: (i) If we have a trigonometric equation \(\cos 3A = \sin (A - {34^0}),\) where A is an acute angle, ...
(i) If we have a trigonometric equation cos3A=sin(A−340), where A is an acute angle, find the value of A.
(ii) Prove the following identity, where the angles involved are acute angles for which the expression so defined is.
1+tan2A1+cot2A=(1−tanA1−cotA)2
Solution
Hint- In this question, simply use properties of acute angle i.e. for acute angle θ,cosθ=sin(900−θ) and equate both sides to get the answer. For the second part, use basic trigonometric formulas and simplify both sides of the equation separately to check the result of L.H.S to R.H.S.
Complete step-by-step solution -
(i) Given that: cos3A=sin(A−340) ---(a)
where A is acute angle θ,cosθ=sin(900−θ) --(b)
From equation (a) we get
⇒cos3A=sin(A−340)
Using (b) we get
⇒sin(900−3A)=sin(A−340)
⇒900−3A=A−340
⇒900+340=A+3A
⇒1240=4A
⇒41240=A
or, A=310
Hence, the value of A=310
∴A=310
(ii) To prove 1+tan2A1+cot2A=(1−tanA1−cotA)2 , we will just solve for the L.H.S and then equate that to the R.H.S.
L.H.S =1+tan2A1+cot2A
Now, substitute cotA=sinAcosA and tanA=cosAsinA
=1+(cos2Asin2A)1+(sin2Acos2A)=cos2Acos2A+sin2Asin2Asin2A+cos2A
Now, we know that sin2A+cos2A=1
=cos2A1sin2A1
Now, multiply and divide by 1−2sinAcosA
=cos2A1−2sinAcosAsin2A1−2sinAcosA
Split the denominator fraction of sin2A,cos2A
=cos2A1−cos2A2sinAcosAsin2A1−sin2A2sinAcosA
Now, we know that sinA1=cosecA,cosA1=secA
=sec2A−cosA2sinAcosec2A−sinA2cosA
We know that cotA=sinAcosA and tanA=cosAsinA
=sec2A−2tanAcosec2A−2cotA
Now, we know that cosec2A=1+cot2A , sec2A=1+tan2A
=1+tan2A−2tanA1+cot2A−2cotA=12+tan2A−2tanA12+cot2A−2cotA
We know that, a2+b2−2ab=(a−b)2
=(1−tanA)2(1−cotA)2=(1−tanA1−cotA)2=R.H.S
Now, L.H.S = R.H.S
Hence proved that 1+tan2A1+cot2A=(1−tanA1−cotA)2
Note- In such types of question, we just have to keep in mind of the trigonometric identities to simplify the equations using identities like cosθ=sin(900−θ) , cotA=sinAcosA , tanA=cosAsinA , sin2A+cos2A=1 and sinA1=cosecA,cosA1=secA . Also, keep in mind of the algebraic identities like a2+b2−2ab=(a−b)2 .