Solveeit Logo

Question

Question: (i) If we have a trigonometric equation \(\cos 3A = \sin (A - {34^0}),\) where A is an acute angle, ...

(i) If we have a trigonometric equation cos3A=sin(A340),\cos 3A = \sin (A - {34^0}), where A is an acute angle, find the value of A.
(ii) Prove the following identity, where the angles involved are acute angles for which the expression so defined is.
1+cot2A1+tan2A=(1cotA1tanA)2\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2}

Explanation

Solution

Hint- In this question, simply use properties of acute angle i.e. for acute angle θ,cosθ=sin(900θ)\theta ,\cos \theta = \sin ({90^0} - \theta ) and equate both sides to get the answer. For the second part, use basic trigonometric formulas and simplify both sides of the equation separately to check the result of L.H.S to R.H.S.

Complete step-by-step solution -
(i) Given that: cos3A=sin(A340)\cos 3A = \sin (A - {34^0}) ---(a)
where A is acute angle θ,cosθ=sin(900θ)\theta ,\cos \theta = \sin ({90^0} - \theta ) --(b)
From equation (a) we get
cos3A=sin(A340)\Rightarrow \cos 3A = \sin (A - {34^0})
Using (b) we get
sin(9003A)=sin(A340)\Rightarrow \sin ({90^0} - 3A) = \sin (A - {34^0})
9003A=A340\Rightarrow {90^0} - 3A = A - {34^0}
900+340=A+3A\Rightarrow {90^0} + {34^0} = A + 3A
1240=4A\Rightarrow {124^0} = 4A
12404=A\Rightarrow \dfrac{{{{124}^0}}}{4} = A
or, A=310A = {31^0}
Hence, the value of A=310A = {31^0}
A=310\therefore A = {31^0}

(ii) To prove 1+cot2A1+tan2A=(1cotA1tanA)2\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2} , we will just solve for the L.H.S and then equate that to the R.H.S.
L.H.S =1+cot2A1+tan2A = \dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}}
Now, substitute cotA=cosAsinA\cot A = \dfrac{{\cos A}}{{\sin A}} and tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}}
=1+(cos2Asin2A)1+(sin2Acos2A)=sin2A+cos2Asin2Acos2A+sin2Acos2A= \dfrac{{1 + \left( {\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}} \right)}}{{1 + \left( {\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}} \right)}} = \dfrac{{\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{{{\sin }^2}A}}}}{{\dfrac{{{{\cos }^2}A + {{\sin }^2}A}}{{{{\cos }^2}A}}}}
Now, we know that sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1
=1sin2A1cos2A= \dfrac{{\dfrac{1}{{{{\sin }^2}A}}}}{{\dfrac{1}{{{{\cos }^2}A}}}}
Now, multiply and divide by 12sinAcosA1 - 2\sin A\cos A
=12sinAcosAsin2A12sinAcosAcos2A= \dfrac{{\dfrac{{1 - 2\sin A\cos A}}{{{{\sin }^2}A}}}}{{\dfrac{{1 - 2\sin A\cos A}}{{{{\cos }^2}A}}}}
Split the denominator fraction of sin2A,cos2A{\sin ^2}A,{\cos ^2}A
=1sin2A2sinAcosAsin2A1cos2A2sinAcosAcos2A= \dfrac{{\dfrac{1}{{{{\sin }^2}A}} - \dfrac{{2\sin A\cos A}}{{{{\sin }^2}A}}}}{{\dfrac{1}{{{{\cos }^2}A}} - \dfrac{{2\sin A\cos A}}{{{{\cos }^2}A}}}}
Now, we know that 1sinA=cosecA,1cosA=secA\dfrac{1}{{\sin A}} = \cos ecA,\dfrac{1}{{\cos A}} = \sec A
=cosec2A2cosAsinAsec2A2sinAcosA= \dfrac{{\cos e{c^2}A - \dfrac{{2\cos A}}{{\sin A}}}}{{{{\sec }^2}A - \dfrac{{2\sin A}}{{\cos A}}}}
We know that cotA=cosAsinA\cot A = \dfrac{{\cos A}}{{\sin A}} and tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}}
=cosec2A2cotAsec2A2tanA= \dfrac{{\cos e{c^2}A - 2\cot A}}{{{{\sec }^2}A - 2\tan A}}
Now, we know that cosec2A=1+cot2A\cos e{c^2}A = 1 + {\cot ^2}A , sec2A=1+tan2Ase{c^2}A = 1 + {\tan ^2}A
=1+cot2A2cotA1+tan2A2tanA=12+cot2A2cotA12+tan2A2tanA= \dfrac{{1 + {{\cot }^2}A - 2\cot A}}{{1 + {{\tan }^2}A - 2\tan A}} = \dfrac{{{1^2} + {{\cot }^2}A - 2\cot A}}{{{1^2} + {{\tan }^2}A - 2\tan A}}
We know that, a2+b22ab=(ab)2{a^2} + {b^2} - 2ab = {(a - b)^2}
=(1cotA)2(1tanA)2=(1cotA1tanA)2=R.H.S= \dfrac{{{{(1 - \cot A)}^2}}}{{{{(1 - \tan A)}^2}}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2} = R.H.S
Now, L.H.S = R.H.S
Hence proved that 1+cot2A1+tan2A=(1cotA1tanA)2\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2}

Note- In such types of question, we just have to keep in mind of the trigonometric identities to simplify the equations using identities like cosθ=sin(900θ)\cos \theta = \sin ({90^0} - \theta ) , cotA=cosAsinA\cot A = \dfrac{{\cos A}}{{\sin A}} , tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}} , sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1 and 1sinA=cosecA,1cosA=secA\dfrac{1}{{\sin A}} = \cos ecA,\dfrac{1}{{\cos A}} = \sec A . Also, keep in mind of the algebraic identities like a2+b22ab=(ab)2{a^2} + {b^2} - 2ab = {(a - b)^2} .