Solveeit Logo

Question

Question: I. If \({ 5.5g }\) of a mixture of \({ Fe }{ SO }_{ 4 }{ .7H }_{ 2 }{ O }\) and \({ Fe }_{ 2 }\left(...

I. If 5.5g{ 5.5g } of a mixture of FeSO4.7H2O{ Fe }{ SO }_{ 4 }{ .7H }_{ 2 }{ O } and Fe2(SO4)3.9H2O{ Fe }_{ 2 }\left( { SO }_{ 4 } \right) _{ 3 }{ .9H }_{ 2 }{ O } required 5.4mL{ 5.4mL} of 0.1N FeSO4.7H2O{ Fe }{ SO }_{ 4 }{ .7H }_{ 2 }{ O } solution for II. complete oxidation, then calculate the number of gram moles of hydrated ferric sulphate in mixture.
The vapour density of a mixture consisting of NO2{ NO }_{ 2 } and N2O4{ N }_{ 2 }{ O }_{ 4 } is 38.3 at 26.7C{ 26.7 }^{ \circ }{ C }. Calculate the number of moles of NO2{ NO }_{ 2 } in 100g{ 100g } of the mixture.
A. (i) 4.76mmol{ 4.76mmol }, (ii) 0.265mol{ 0.265mol }
B. (i) 5.36mmol{ 5.36mmol }, (ii) 0.34mol{ 0.34mol }
C. (i) 9.52mmol{ 9.52mmol }, (ii) 0.43mol{ 0.43mol }
D. (i) 10.72mmol{ 10.72mmol} , (ii) 0.68mol{ 0.68mol }

Explanation

Solution

Vapour density: It is defined as the ratio of the mass of a volume of a gas, to the mass of an equal volume of hydrogen, measured under the same conditions of temperature and pressure.
Vapour density=molar mass2Vapour\text{ }density=\dfrac{molar\text{ mass}}{2}

Complete Solution :
Let x be the number of gram moles of hydrated ferric sulphate in mixture.
It is given that,
Total mass of mixture = 5.5g{ 5.5g }
The molar mass of hydrated ferric sulphate Fe2(SO4)3.9H2O{ Fe }_{ 2 }\left( { SO }_{ 4 } \right) _{ 3 }{ .9H }_{ 2 }{ O } is 562gmol1{ 562gmol }^{ -1 }.
The mass of hydrated ferric sulphate will be 562x{ 562x } grams.
So, the mass of hydrated ferrous sulphate will be 5.5562xgrams{ 5.5-562x grams }.
The molar mass of hydrated ferrous sulphate is 278gmol1{ 278 gmol }^{ -1 }.
The number of moles of hydrated ferrous sulphate will be
5.5562x278\dfrac{5.5-562x}{278}
This is equal to the number of moles of ferrous ions that can be oxidized by potassium permanganate.
5.4mL of 0.1N potassium permanganate are used.

Hence, the number of gram equivalent of potassium permanganate:
0.1×5.41000=0.00054eq0.1\times \dfrac{5.4}{1000}=0.00054eq
They are also equal to the number of g eq. of ferrous ions. They are also equal to the number of moles of ferrous ions.
5.5562x278=0.00054\dfrac { 5.5-562x }{ 278 } { =0.00054 }
5.5562x=0.150125.5-562x=0.15012
562x=5.349{ 562x=5.349 }
x=5.349562{ x= }\dfrac { 5.349 }{ 562 }
x=9.52×103moles{ x=9.52\times 10 }^{ -3 }{ moles }
x = 9.52mmol{ 9.52mmol }
Hence, the number of gram moles of hydrated ferric sulphate in mixture is 9.52mmol{ 9.52 mmol }.

(ii) Let 100g{ 100g } of mixture contains x moles of NO2{ NO }_{ 2 }
The molecular weight of NO2{ NO }_{ 2 } is 46gmol1{ 46 gmol }^{ -1 }.
The mass of x moles will be 46x grams

So, the mixture will contain 10046x{ 100-46x } grams of N2O4{ N }_{ 2 }{ O }_{ 4 }.
The molecular weight of N2O4{ N }_{ 2 }{ O }_{ 4 } is 92gmol1{ 92 gmol }^{ -1 }.
Hence, the number of moles of N2O4{ N }_{ 2 }{ O }_{ 4 };
10046x92gmol1\dfrac { 100-46x }{ 92 gmol^{ -1 } }

Therefore, the average molecular mass of the mixture is:
46x+92(10046x92)x+(10046x92)\dfrac { 46x+92\left( \dfrac { 100-46x }{ 92 } \right) }{ x+\left( \dfrac { 100-46x }{ 92 } \right) }
100x+(10046x92)\dfrac { 100 }{ x+\left( \dfrac { 100-46x }{ 92 } \right) }
920092x+10046x\dfrac { 9200 }{ 92x+100-46x }
920046x+100\dfrac { 9200 }{ 46x+100 }
It is given that,
The vapour density of the mixture = 38.3{ 38.3 }.

As we know, Molecular weight = 2×38.3=76.6gmol1{ 2\times 38.3=76.6 gmol^{ -1 } }
= 2×38.3=76.6gmol1{ 2\times 38.3=76.6 gmol^{ -1 } }…..(2)
From equation (1) and (2), we get
920046x+100=76.6\dfrac { 9200 }{ 46x+100 } { =76.6 }
120.1=46x+100{ 120.1 = 46x+100 }
46x=20.1{ 46x = 20.1 }
x=20.146{ x= }\dfrac { 20.1 }{ 46 }
x = 0.437mol{ 0.437 mol }
Hence, the number of moles of NO2{ NO }_{ 2 } in 100g{ 100 g } of the mixture = 0.437mol{ 0.437 mol }
So, the correct answer is “Option C”.

Note: The possibility to make a mistake is that to calculate the gram moles of hydrated ferric sulphate, you must have to calculate the number of gram equivalent of potassium permanganate. Also, the molecular mass is equal to the vapour density multiplied by 2.