Solveeit Logo

Question

Question: (i) Find the square root of the complex number \(z=3+4i\). (ii) Find the value of \({{x}^{3}}-{{x}...

(i) Find the square root of the complex number z=3+4iz=3+4i.
(ii) Find the value of x3x2+x+46{{x}^{3}}-{{x}^{2}}+x+46 if x=2+3ix=2+3i.

Explanation

Solution

We first assume a complex number as the root of the given number z=3+4iz=3+4i. The square of the variable part will give z=3+4iz=3+4i. We equate the real parts of the square to find the variables. We put the values to find the square root. In the second case we put the values in the polynomial and use the identities of i2=1,i3=i,i4=1{{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1 to find the answer.

Complete step by step answer:
We need to find the square root of the complex number z=3+4iz=3+4i.
As there is a complex number ‘i’ present in the square value, the root will also be complex.
Let the root be (a+ib)\left( a+ib \right). So, (a+ib)2=z=3+4i{{\left( a+ib \right)}^{2}}=z=3+4i. We know i2=1{{i}^{2}}=-1.
We expand the square and get (a+ib)2=(a2b2)+2aib=3+4i{{\left( a+ib \right)}^{2}}=\left( {{a}^{2}}-{{b}^{2}} \right)+2aib=3+4i.
We can equate the real parts and get (a2b2)=3,2abi=4i\left( {{a}^{2}}-{{b}^{2}} \right)=3,2abi=4i.
The value of ab becomes ab=42=2ab=\dfrac{4}{2}=2.
Putting the value, we get a=±2,b=±1a=\pm 2,b=\pm 1 as (2212)=3\left( {{2}^{2}}-{{1}^{2}} \right)=3. The root is (a+ib)=±(2+i)\left( a+ib \right)=\pm \left( 2+i \right)
So, the root of the number z=3+4iz=3+4i is ±(2+i)\pm \left( 2+i \right).
Now we need to find the value of x3x2+x+46{{x}^{3}}-{{x}^{2}}+x+46 if x=2+3ix=2+3i.
We have the identities of i2=1,i3=i,i4=1{{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1. We put the values and get
x3x2+x+46 =(2+3i)3(2+3i)2+(2+3i)+46 \begin{aligned} & {{x}^{3}}-{{x}^{2}}+x+46 \\\ & ={{\left( 2+3i \right)}^{3}}-{{\left( 2+3i \right)}^{2}}+\left( 2+3i \right)+46 \\\ \end{aligned}
We now use the square and cube formulas to find the simplest form.
(2+3i)3(2+3i)2+(2+3i)+46 =8+27i3+36i+54i249i212i+2+3i+46 \begin{aligned} & {{\left( 2+3i \right)}^{3}}-{{\left( 2+3i \right)}^{2}}+\left( 2+3i \right)+46 \\\ & =8+27{{i}^{3}}+36i+54{{i}^{2}}-4-9{{i}^{2}}-12i+2+3i+46 \\\ \end{aligned}
We place the values of i2=1,i3=i,i4=1{{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1.
8+27i3+36i+54i249i212i+2+3i+46 =5227i+36i54+912i+3i =7 \begin{aligned} & 8+27{{i}^{3}}+36i+54{{i}^{2}}-4-9{{i}^{2}}-12i+2+3i+46 \\\ & =52-27i+36i-54+9-12i+3i \\\ & =7 \\\ \end{aligned}

Therefore, the value of x3x2+x+46{{x}^{3}}-{{x}^{2}}+x+46 if x=2+3ix=2+3i is 7.

Note: We can solve the equations like (a2b2)=3,ab=2\left( {{a}^{2}}-{{b}^{2}} \right)=3,ab=2 by using the formula b=2ab=\dfrac{2}{a} in the equation of (a2b2)=3\left( {{a}^{2}}-{{b}^{2}} \right)=3. We get quadratic equation for a2{{a}^{2}} as a2(2a)2=3{{a}^{2}}-{{\left( \dfrac{2}{a} \right)}^{2}}=3. We assume
a2=z{{a}^{2}}=z. We get z23z4=0z=4,1{{z}^{2}}-3z-4=0\Rightarrow z=-4,1. As z is a square value of a2=z=1{{a}^{2}}=z=1. So, a=±1a=\pm 1 which gives b=±2b=\pm 2.