Solveeit Logo

Question

Question: Hydrogen atom from excited state comes to the ground state by emitting a photon of wavelength \(\lam...

Hydrogen atom from excited state comes to the ground state by emitting a photon of wavelength λ\lambda If R is the Rydberg constant, then the principal quantum number n of the excited state is

A

λRλR1\sqrt{\frac{\lambda R}{\lambda R - 1}}

B

λλR1\sqrt{\frac{\lambda}{\lambda R - 1}}

C

λR2λR1\sqrt{\frac{\lambda R^{2}}{\lambda R - 1}}

D

λRλR1\sqrt{\frac{\lambda R}{\lambda R - 1}}

Answer

λRλR1\sqrt{\frac{\lambda R}{\lambda R - 1}}

Explanation

Solution

According to Rydberg’s formula

1λ=R(1nf21ni2)\frac{1}{\lambda} = R\left( \frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}} \right)

Here, nf=1,ni=nn_{f} = 1,n_{i} = n

1λ=R(1121n2)=1λ=R(11n2)............(i)\therefore\frac{1}{\lambda} = R\left( \frac{1}{1^{2}} - \frac{1}{n^{2}} \right) = \frac{1}{\lambda} = R\left( 1 - \frac{1}{n^{2}} \right)............(i) multiplying equation (i) by λ\lambda on both sides,

1=λR(11n2)or1λR=11n21 = \lambda R\left( 1 - \frac{1}{n^{2}} \right)or\frac{1}{\lambda R} = 1 - \frac{1}{n^{2}}

Or

1n2=11λRor1n2=λR1λRorn=λRλR1\frac{1}{n^{2}} = 1 - \frac{1}{\lambda R}or\frac{1}{n^{2}} = \frac{\lambda R - 1}{\lambda R}orn = \sqrt{\frac{\lambda R}{\lambda R - 1}}