Solveeit Logo

Question

Question: HW:- ring its rolling. find $V_p - V_q$ ? $V_p - V_r$ ? $V_p - V_s$ ?...

HW:-

ring its rolling. find VpVqV_p - V_q ? VpVrV_p - V_r ? VpVsV_p - V_s ?

Answer

VpVq=BVR,VpVr=2BVR,VpVs=BVRV_p - V_q = BVR, V_p - V_r = 2BVR, V_p - V_s = BVR

Explanation

Solution

The problem asks for the potential difference between various points on a rolling ring in a uniform magnetic field. The ring is rolling without slipping.

Let R be the radius of the ring. Let V be the velocity of the center of the ring to the right. Let ω\omega be the angular velocity of the ring (clockwise). The magnetic field B\vec{B} is uniform and points out of the page, so B=Bk^\vec{B} = B\hat{k}.

1. Rolling without slipping condition:

For rolling without slipping, the velocity of the point of contact (P) with the ground is zero. Let the center of the ring be C. The velocity of the center is VC=Vi^\vec{V}_C = V\hat{i}. The angular velocity is ω=ωk^\vec{\omega} = -\omega\hat{k} (clockwise). The velocity of any point on the ring is given by v=VC+ω×r\vec{v} = \vec{V}_C + \vec{\omega} \times \vec{r}, where r\vec{r} is the position vector of the point relative to the center C.

For point P, rCP=Rj^\vec{r}_{CP} = -R\hat{j}. vP=Vi^+(ωk^)×(Rj^)=Vi^+ωR(k^×j^)=Vi^+ωR(i^)=(VωR)i^\vec{v}_P = V\hat{i} + (-\omega\hat{k}) \times (-R\hat{j}) = V\hat{i} + \omega R (\hat{k} \times \hat{j}) = V\hat{i} + \omega R (-\hat{i}) = (V - \omega R)\hat{i}. Since vP=0\vec{v}_P = 0, we have VωR=0    V=ωRV - \omega R = 0 \implies V = \omega R.

2. Velocities of the points P, Q, R, S:

Using V=ωRV = \omega R:

  • Point P (bottom): rCP=Rj^\vec{r}_{CP} = -R\hat{j} vP=(VωR)i^=0\vec{v}_P = (V - \omega R)\hat{i} = 0.
  • Point Q (left): rCQ=Ri^\vec{r}_{CQ} = -R\hat{i} vQ=Vi^+(ωk^)×(Ri^)=Vi^+ωR(k^×i^)=Vi^+ωRj^=Vi^+Vj^\vec{v}_Q = V\hat{i} + (-\omega\hat{k}) \times (-R\hat{i}) = V\hat{i} + \omega R (\hat{k} \times \hat{i}) = V\hat{i} + \omega R \hat{j} = V\hat{i} + V\hat{j}.
  • Point R (top): rCR=Rj^\vec{r}_{CR} = R\hat{j} vR=Vi^+(ωk^)×(Rj^)=Vi^ωR(k^×j^)=Vi^ωR(i^)=(V+ωR)i^=2Vi^\vec{v}_R = V\hat{i} + (-\omega\hat{k}) \times (R\hat{j}) = V\hat{i} - \omega R (\hat{k} \times \hat{j}) = V\hat{i} - \omega R (-\hat{i}) = (V + \omega R)\hat{i} = 2V\hat{i}.
  • Point S (right): rCS=Ri^\vec{r}_{CS} = R\hat{i} vS=Vi^+(ωk^)×(Ri^)=Vi^ωR(k^×i^)=Vi^ωRj^=Vi^Vj^\vec{v}_S = V\hat{i} + (-\omega\hat{k}) \times (R\hat{i}) = V\hat{i} - \omega R (\hat{k} \times \hat{i}) = V\hat{i} - \omega R \hat{j} = V\hat{i} - V\hat{j}.

3. Potential difference formula:

The potential difference between two points A and B on a conductor moving in a magnetic field is given by: VAVB=BA(v×B)dlV_A - V_B = \int_B^A (\vec{v} \times \vec{B}) \cdot d\vec{l} where v\vec{v} is the velocity of the conductor element dld\vec{l}.

Let's calculate v×B\vec{v} \times \vec{B} for a general point on the ring. Let the center of the ring be C. The position of a point on the ring relative to C is r=xi^+yj^\vec{r} = x\hat{i} + y\hat{j}. The velocity of this point is v=VC+ω×r=Vi^+(ωk^)×(xi^+yj^)=Vi^ωx(k^×i^)ωy(k^×j^)\vec{v} = \vec{V}_C + \vec{\omega} \times \vec{r} = V\hat{i} + (-\omega\hat{k}) \times (x\hat{i} + y\hat{j}) = V\hat{i} - \omega x(\hat{k} \times \hat{i}) - \omega y(\hat{k} \times \hat{j}) v=Vi^ωxj^+ωyi^=(V+ωy)i^ωxj^\vec{v} = V\hat{i} - \omega x\hat{j} + \omega y\hat{i} = (V + \omega y)\hat{i} - \omega x\hat{j}. Now, v×B=((V+ωy)i^ωxj^)×(Bk^)\vec{v} \times \vec{B} = ((V + \omega y)\hat{i} - \omega x\hat{j}) \times (B\hat{k}) v×B=B(V+ωy)(i^×k^)Bωx(j^×k^)\vec{v} \times \vec{B} = B(V + \omega y)(\hat{i} \times \hat{k}) - B\omega x(\hat{j} \times \hat{k}) v×B=B(V+ωy)(j^)Bωx(i^)\vec{v} \times \vec{B} = B(V + \omega y)(-\hat{j}) - B\omega x(\hat{i}) v×B=Bωxi^B(V+ωy)j^\vec{v} \times \vec{B} = -B\omega x\hat{i} - B(V + \omega y)\hat{j}. Since V=ωRV = \omega R, we have: v×B=Bωxi^B(ωR+ωy)j^=Bωxi^Bω(R+y)j^\vec{v} \times \vec{B} = -B\omega x\hat{i} - B(\omega R + \omega y)\hat{j} = -B\omega x\hat{i} - B\omega(R + y)\hat{j}.

4. Calculation of potential differences:

  • VPVQV_P - V_Q: We integrate from Q to P. The path from Q to P is along the circumference. However, we can choose a simpler path, for example, from Q to C and then from C to P. VPVQ=(VPVC)+(VCVQ)V_P - V_Q = (V_P - V_C) + (V_C - V_Q). Let's calculate VPVCV_P - V_C and VCVQV_C - V_Q. Path from C to P: rCP=Rj^\vec{r}_{CP} = -R\hat{j}. dl=dyj^d\vec{l} = dy\hat{j} from y=0y=0 to y=Ry=-R. VPVC=CP(v×B)dl=0R(Bωxi^Bω(R+y)j^)(dyj^)V_P - V_C = \int_C^P (\vec{v} \times \vec{B}) \cdot d\vec{l} = \int_0^{-R} (-B\omega x\hat{i} - B\omega(R + y)\hat{j}) \cdot (dy\hat{j}). Along the path from C to P, x=0x=0. VPVC=0R(Bω(R+y)j^)(dyj^)=0RBω(R+y)dyV_P - V_C = \int_0^{-R} (-B\omega(R + y)\hat{j}) \cdot (dy\hat{j}) = \int_0^{-R} -B\omega(R + y) dy VPVC=Bω[Ry+y22]0R=Bω[R(R)+(R)22]=Bω[R2+R22]=Bω(R22)=12BωR2V_P - V_C = -B\omega \left[ Ry + \frac{y^2}{2} \right]_0^{-R} = -B\omega \left[ R(-R) + \frac{(-R)^2}{2} \right] = -B\omega \left[ -R^2 + \frac{R^2}{2} \right] = -B\omega \left( -\frac{R^2}{2} \right) = \frac{1}{2}B\omega R^2. Path from Q to C: rCQ=Ri^\vec{r}_{CQ} = -R\hat{i}. dl=dxi^d\vec{l} = dx\hat{i} from x=Rx=-R to x=0x=0. VCVQ=QC(v×B)dl=R0(Bωxi^Bω(R+y)j^)(dxi^)V_C - V_Q = \int_Q^C (\vec{v} \times \vec{B}) \cdot d\vec{l} = \int_{-R}^0 (-B\omega x\hat{i} - B\omega(R + y)\hat{j}) \cdot (dx\hat{i}). Along the path from Q to C, y=0y=0. VCVQ=R0(Bωxi^)(dxi^)=R0BωxdxV_C - V_Q = \int_{-R}^0 (-B\omega x\hat{i}) \cdot (dx\hat{i}) = \int_{-R}^0 -B\omega x dx VCVQ=Bω[x22]R0=Bω[0(R)22]=Bω(R22)=12BωR2V_C - V_Q = -B\omega \left[ \frac{x^2}{2} \right]_{-R}^0 = -B\omega \left[ 0 - \frac{(-R)^2}{2} \right] = -B\omega \left( -\frac{R^2}{2} \right) = \frac{1}{2}B\omega R^2. Therefore, VPVQ=(VPVC)+(VCVQ)=12BωR2+12BωR2=BωR2V_P - V_Q = (V_P - V_C) + (V_C - V_Q) = \frac{1}{2}B\omega R^2 + \frac{1}{2}B\omega R^2 = B\omega R^2. Since V=ωRV = \omega R, VPVQ=BVRV_P - V_Q = BVR.

  • VPVRV_P - V_R: We integrate from R to P. Path from R to C and then C to P. VPVR=(VPVC)+(VCVR)V_P - V_R = (V_P - V_C) + (V_C - V_R). We already found VPVC=12BωR2V_P - V_C = \frac{1}{2}B\omega R^2. Path from R to C: rCR=Rj^\vec{r}_{CR} = R\hat{j}. dl=dyj^d\vec{l} = dy\hat{j} from y=Ry=R to y=0y=0. VCVR=RC(v×B)dl=R0(Bωxi^Bω(R+y)j^)(dyj^)V_C - V_R = \int_R^C (\vec{v} \times \vec{B}) \cdot d\vec{l} = \int_R^0 (-B\omega x\hat{i} - B\omega(R + y)\hat{j}) \cdot (dy\hat{j}). Along the path from R to C, x=0x=0. VCVR=R0(Bω(R+y)j^)(dyj^)=R0Bω(R+y)dyV_C - V_R = \int_R^0 (-B\omega(R + y)\hat{j}) \cdot (dy\hat{j}) = \int_R^0 -B\omega(R + y) dy VCVR=Bω[Ry+y22]R0=Bω[0(R(R)+R22)]=Bω(3R22)=32BωR2V_C - V_R = -B\omega \left[ Ry + \frac{y^2}{2} \right]_R^0 = -B\omega \left[ 0 - \left( R(R) + \frac{R^2}{2} \right) \right] = -B\omega \left( -\frac{3R^2}{2} \right) = \frac{3}{2}B\omega R^2. Therefore, VPVR=(VPVC)+(VCVR)=12BωR2+32BωR2=2BωR2V_P - V_R = (V_P - V_C) + (V_C - V_R) = \frac{1}{2}B\omega R^2 + \frac{3}{2}B\omega R^2 = 2B\omega R^2. Since V=ωRV = \omega R, VPVR=2BVRV_P - V_R = 2BVR.

  • VPVSV_P - V_S: We integrate from S to P. Path from S to C and then C to P. VPVS=(VPVC)+(VCVS)V_P - V_S = (V_P - V_C) + (V_C - V_S). We already found VPVC=12BωR2V_P - V_C = \frac{1}{2}B\omega R^2. Path from S to C: rCS=Ri^\vec{r}_{CS} = R\hat{i}. dl=dxi^d\vec{l} = dx\hat{i} from x=Rx=R to x=0x=0. VCVS=SC(v×B)dl=R0(Bωxi^Bω(R+y)j^)(dxi^)V_C - V_S = \int_S^C (\vec{v} \times \vec{B}) \cdot d\vec{l} = \int_R^0 (-B\omega x\hat{i} - B\omega(R + y)\hat{j}) \cdot (dx\hat{i}). Along the path from S to C, y=0y=0. VCVS=R0(Bωxi^)(dxi^)=R0BωxdxV_C - V_S = \int_R^0 (-B\omega x\hat{i}) \cdot (dx\hat{i}) = \int_R^0 -B\omega x dx VCVS=Bω[x22]R0=Bω[0R22]=Bω(R22)=12BωR2V_C - V_S = -B\omega \left[ \frac{x^2}{2} \right]_R^0 = -B\omega \left[ 0 - \frac{R^2}{2} \right] = -B\omega \left( -\frac{R^2}{2} \right) = \frac{1}{2}B\omega R^2. Therefore, VPVS=(VPVC)+(VCVS)=12BωR2+12BωR2=BωR2V_P - V_S = (V_P - V_C) + (V_C - V_S) = \frac{1}{2}B\omega R^2 + \frac{1}{2}B\omega R^2 = B\omega R^2. Since V=ωRV = \omega R, VPVS=BVRV_P - V_S = BVR.

Summary of results: VPVQ=BVRV_P - V_Q = BVR VPVR=2BVRV_P - V_R = 2BVR $V_P - V_S = BVR