Question
Question: How will you solve \[9a - 4b = - 5\] and \[6a - 2b = - 3\] using matrices? \[ A)a = - \dfrac{1...
How will you solve 9a−4b=−5 and 6a−2b=−3 using matrices?
A)a=−31,b=21 B)a=2,b=3 C)a=21,b=21 D)a=21,b=23Solution
Hint : Simultaneous equation or system of equation can be solved by basic algebra as well as by matrices. At first the method might be daunting but later on it becomes quick and easy once the preparation portion is mastered and only a few simple calculations are involved.
Complete step-by-step answer :
Since the given equation is
9a−4b=−5 and 6a−2b=−3
Firstly it will be written as matrices
\Rightarrow \left| A \right| = (9( - 2) - (6(4)) = - 18 + 24 = 6 \\
\Rightarrow {A^{ - 1}} = \dfrac{1}{6}\left( {\begin{array}{{20}{c}}
{ - 2}&4 \\
6&9
\end{array}} \right) = \left( {\begin{array}{{20}{c}}
{ - \dfrac{1}{3}}&{\dfrac{2}{3}} \\
{ - 1}&{\dfrac{3}{2}}
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{{20}{c}}
{ - \dfrac{1}{3}}&{\dfrac{2}{3}} \\
{ - 1}&{\dfrac{3}{2}}
\end{array}} \right)\left( {\begin{array}{{20}{c}}
9&{ - 4} \\
6&{ - 2}
\end{array}} \right)\left( {\begin{array}{{20}{c}}
a \\
b
\end{array}} \right) = \left( {\begin{array}{{20}{c}}
{ - \dfrac{1}{3}}&{\dfrac{2}{3}} \\
{ - 1}&{\dfrac{3}{2}}
\end{array}} \right)\left( {\begin{array}{{20}{c}}
{ - 5} \\
{ - 3}
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{{20}{c}}
1&0 \\
0&1
\end{array}} \right)\left( {\begin{array}{{20}{c}}
a \\
b
\end{array}} \right) = \left( {\begin{array}{{20}{c}}
{ - \dfrac{1}{3}} \\
{\dfrac{1}{2}}
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{{20}{c}}
a \\
b
\end{array}} \right) = \left( {\begin{array}{{20}{c}}
{ - \dfrac{1}{3}} \\
{\dfrac{1}{2}}
\end{array}} \right) \\
\Rightarrow (|M|) = ad - bc \\
\Rightarrow {M^{ - 1}} = \dfrac{1}{{(|M|)}}\left( {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a;
\end{array}} \right) \\