Solveeit Logo

Question

Question: How will you prove the trigonometric formula Cos(A+B) = Cos A Cos B – Sin A Sin B using the formula ...

How will you prove the trigonometric formula Cos(A+B) = Cos A Cos B – Sin A Sin B using the formula of the cross product of two vectors1?

Explanation

Solution

The cross product of two vectors is also a vector quantity The cross product a×\timesb is defined as a vector c that is perpendicular to both a and b, with a direction given by the right-hand rule and a magnitude equal to the area of the parallelogram that the vectors span.
A×B=ABSinθnA \times B = \left | A \right |\left | B \right |\operatorname{Sin} \theta n
Where
A\left | A \right | is the length of vector A
B\left | B \right | is the length of vector B
Is the angle between A & B
N is the unit vector perpendicular to the plane containing A and B

Complete step by step solution:
Refer to the following image

Now, consider two unit vectors in the X-Y plane as follows :
a^\hat a→ unit vector inclined with the positive direction of X-axis at angles A
b^\hat b→ unit vector inclined with the positive direction of X-axis at angles 90-B, where 90B>A90 - B > A
The angle between these two vectors becomes
θ=90AB=90(A+B)\theta = 90 - A - B = 90 - \left( {A + B} \right)
Now writing in vector form we get
a^=CosAi^+SinAj^\hat a = \operatorname{Cos} A\hat i + \operatorname{Sin} A\hat j
b^=Cos(90B)i^+Sin(90B)j^\hat b = \operatorname{Cos} \left( {90 - B} \right)\hat i + \operatorname{Sin} \left( {90 - B} \right)\hat j
b^=SinBi^+CosBj^\hat b = \operatorname{Sin} B\hat i + \operatorname{Cos} B\hat j
Now
Taking the cross product of the above two vectors i.e.,
a^×b^=(CosAi^+SinAj^)×(SinBi^+CosBj^)\hat a \times \hat b = \left( {\operatorname{Cos} A\hat i + \operatorname{Sin} A\hat j} \right) \times \left( {\operatorname{Sin} B\hat i + \operatorname{Cos} B\hat j} \right)
A×B=ABSinθk^\because A \times B = \left | A \right |\left | B \right |\operatorname{Sin} \theta \hat k
a^b^Sinθk^=CosACosB(i^×j^)+SinASinB(j^×i^)\therefore \left | {\hat a} \right | \left | {\hat b} \right |\operatorname{Sin} \theta \hat k = \operatorname{Cos} A\operatorname{Cos} B\left( {\hat i \times \hat j} \right) + \operatorname{Sin} A\operatorname{Sin} B(\hat j \times \hat i) Applying Properties of unit vectors i^,j^,k^\hat i,\hat j,\hat k
i^×j^=k^\hat i \times \hat j = \hat k j^×i^=k^\hat j \times \hat i = - \hat k
i^×i^=null\hat i \times \hat i = null j^×j^=null\hat j \times \hat j = null and
A\left | A \right |=1 and B\left | B \right |=1 as both are unit vectors
Also substituting the value of the angle between the vectors, θ=90(A+B)\theta = 90 - \left( {A + B} \right)
Finally, we get,
Sin(90(A+B))k^=CosACosBk^+SinASinBk^\operatorname{Sin} \left( {90 - \left( {A + B} \right)} \right)\hat k = \operatorname{Cos} A\operatorname{Cos} B\hat k + \operatorname{Sin} A\operatorname{Sin} B\hat k
Cos(A+B)=CosACosBSinASinB\therefore \operatorname{Cos} \left( {A + B} \right) = \operatorname{Cos} A\operatorname{Cos} B - \operatorname{Sin} A\operatorname{Sin} B

Note:
The Cross product is a vector quantity
If two vectors are parallel to each other then their cross product will be zero since Sin0=0\operatorname{Sin} 0^\circ = 0
The dot product is a scalar quantity
If two vectors are perpendicular their dot product will be zero since Cos90=0\operatorname{Cos} 90^\circ = 0