Solveeit Logo

Question

Question: How will you prove the formula\(\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B\) using the formul...

How will you prove the formulacos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B using the formula of the vector product of the two vectors?

Explanation

Solution

First we have to draw two units vectors in xy plane both with the angle A and angle B with the total angle of (A+B) then after using the method of the dot product of the vectors we can prove formula which is given in the question.
Formula used:
A.B=ABcosθ\overrightarrow{A}.\overrightarrow{B}=\left| \overrightarrow{A} \right|\left| \overrightarrow{B} \right|\cos \theta

Complete answer:

As shown in the figure, first draw the two vectors in x-y plane one makes an angle A with the x-axis and other one makes an angle B with the x-axis and the both have a total angle of (A+B).
Now in Cartesian form the vector A^ andB^\widehat{A}\text{ and}\widehat{B} with their components can be written as,
A^=cosAi^sinAj^...(1)\widehat{A}=\cos A\widehat{i}-\sin A\widehat{j}...\left( 1 \right)
And the vectorB^\widehat{B}is,
B^=cosBi^+sinBj^...(2)\widehat{B}=\cos B\widehat{i}+\sin B\widehat{j}...\left( 2 \right)
Now let’s take the dot product of the two vectors,
A.B=ABcosθ\overrightarrow{A}.\overrightarrow{B}=\left| \overrightarrow{A} \right|\left| \overrightarrow{B} \right|\cos \theta
It should be consider that the resultant component will be in direction of k^\widehat{k} hence,
A.B=ABsinθk^...(3)\overrightarrow{A}.\overrightarrow{B}=\left| \overrightarrow{A} \right|\left| \overrightarrow{B} \right|\sin \theta \widehat{k}...\left( 3 \right)
Here the total angle θ = 90+B-A and the both vectors are unit vectors hence we can take,
A=B=1...(4)\left| \overrightarrow{A} \right|=\left| \overrightarrow{B} \right|=1...\left( 4 \right)
Now substitute value of the equation (1) (2) and in equation (3)

& \left( \cos A\widehat{i}-\sin A\widehat{j} \right)\left( \cos B\widehat{i}-\sin B\widehat{j} \right)-\cos \left( 90+B-A \right) \\\ & \Rightarrow \sin \left( 90-\left( A-B \right) \right)\widehat{k}=\cos A\cos B\widehat{k}+\sin A\sin B\widehat{k} \\\ \end{aligned}$$ Taking $$\widehat{k}$$vector common and substituting, $\sin \left( 90-A-B \right)=\cos \left( A-B \right)$ We will get, $\therefore \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ **Note:** While multiplying vectors $$\widehat{i},\widehat{j}\text{ and }\widehat{k}$$ please refer below rules to avoid mistakes, $$\begin{aligned} & \widehat{i}\times \widehat{j}=\widehat{k} \\\ & \widehat{j}\times \widehat{i}=-\widehat{k} \\\ & \widehat{i}\times \widehat{i}=\text{null vector} \\\ & \widehat{j}\times \widehat{j}=\text{null vector} \\\ \end{aligned}$$