Solveeit Logo

Question

Question: How to verify \[\dfrac{{\cos 2x}}{{(1 + \sin 2x)}} = \tan \left( {\dfrac{\pi }{4} - x} \right)\] ?...

How to verify cos2x(1+sin2x)=tan(π4x)\dfrac{{\cos 2x}}{{(1 + \sin 2x)}} = \tan \left( {\dfrac{\pi }{4} - x} \right) ?

Explanation

Solution

To solve this we need to know certain trigonometric identities. We take the left hand side of the equation and then we show it to be equal to the right hand side of the equation. We know the cosine and sine double angle formula cos2x=cos2xsin2x\cos 2x = {\cos ^2}x - {\sin ^2}x and sin2x=2sinx.cosx\sin 2x = 2\sin x.\cos x. We also have Pythagoras relation between sine and cosine function. That is sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1. Using this we can solve this.

Complete step by step answer:
Given, cos2x(1+sin2x)=tan(π4x)\dfrac{{\cos 2x}}{{(1 + \sin 2x)}} = \tan \left( {\dfrac{\pi }{{4 - x}}} \right)
Here LHS=cos2x(1+sin2x)LHS = \dfrac{{\cos 2x}}{{(1 + \sin 2x)}} and RHS=tan(π4x)RHS = \tan \left( {\dfrac{\pi }{{4 - x}}} \right).
Let’s take LHS, that is
LHS=cos2x(1+sin2x)LHS = \dfrac{{\cos 2x}}{{(1 + \sin 2x)}}
cos2x(1+sin2x)\dfrac{{\cos 2x}}{{(1 + \sin 2x)}}
We have the identity cos2x=cos2xsin2x\cos 2x = {\cos ^2}x - {\sin ^2}x and sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1,
cos2xsin2x(sin2x+cos2x+sin2x)\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{({{\sin }^2}x + {{\cos }^2}x + \sin 2x)}}
Also we have sin2x=2sinx.cosx\sin 2x = 2\sin x.\cos x
cos2xsin2x(sin2x+cos2x+2sinx.cosx)\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{({{\sin }^2}x + {{\cos }^2}x + 2\sin x.\cos x)}}

We use the algebraic identity a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) and (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab.
(cosxsinx)(cosx+sinx)(sinx+cosx)2\dfrac{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}{{{{(\sin x + \cos x)}^2}}}
Cancelling we have,
cosxsinxsinx+cosx\dfrac{{\cos x - \sin x}}{{\sin x + \cos x}}
Now take cosx\cos x common in both the numerator and the denominator we have,
cosx(1sinxcosx)cosx(1+sinxcosx)\dfrac{{\cos x\left( {1 - \dfrac{{\sin x}}{{\cos x}}} \right)}}{{\cos x\left( {1 + \dfrac{{\sin x}}{{\cos x}}} \right)}}
We know tangent is a ratio of sine and cosine,
1tanx1+tanx\dfrac{{1 - \tan x}}{{1 + \tan x}}
We know that tan(π4)=1\tan \left( {\dfrac{\pi }{4}} \right) = 1,
tan(π4)tanxtan(π4)+tanx\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}
But we know tan(ab)=tanatanb1+tana.tanb\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}} then we have,
tan(π4x)\tan \left( {\dfrac{\pi }{4} - x} \right).

That is LHS=RHS LHS = RHS. Hence proved.

Note: We can also solve this by taking Right hand side of the equation and show it that it is equal to the left hand side of the equation. We use the same identity that what we used in above. Remember a graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.