Solveeit Logo

Question

Question: How to use de moivre’s theorem to express \( \dfrac{{\sin 6\theta }}{{\sin \theta }} \) as a polynom...

How to use de moivre’s theorem to express sin6θsinθ\dfrac{{\sin 6\theta }}{{\sin \theta }} as a polynomial in cosθ\cos \theta ?

Explanation

Solution

Hint : Here, we will use the De Moivre’s theorem and the correlation between the cosine and sine. And the value of the imaginary number and its equivalent value and substitute its value using the theorem and simplify the equation accordingly.

Complete step by step solution:
By using the Pythagoras identity, cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1
As per our requirement we need polynomial in cosine form. sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta
[When we move any term from one side to another, the sign of the term also changes. Positive term becomes negative term and vice-versa.]
By using De Moivre’s theorem in the above equation -
r(cosθ+isinθ)n=rn(cosnθ+isinnθ)r{(\cos \theta + i\sin \theta )^n} = {r^n}(\cos n\theta + i\sin n\theta )
Let us assume that cosθ\cos \theta is denoted by “c” and sinθ\sin \theta is denoted by “s” ….(A)
So, by using de Moivre’s theorem
We get,
cos6θ+isin6θ=(c+is)6\cos 6\theta + i\sin 6\theta = {(c + is)^6}
By using the formula for the expansion for algebraic with sixth power-
cos6θ+isin6θ=c6+6ic5s15c4s220ic3s3+15c2s4+6ics5s6\cos 6\theta + i\sin 6\theta = {c^6} + 6i{c^5}s - 15{c^4}{s^2} - 20i{c^3}{s^3} + 15{c^2}{s^4} + 6ic{s^5} - {s^6}
Arrange all the like terms together, means all real terms together and the imaginary terms together.
cos6θ+isin6θ=(c6s615c4s2+15c2s4)+is(6cs4+6c520c3s2)\cos 6\theta + i\sin 6\theta = ({c^6} - {s^6} - 15{c^4}{s^2} + 15{c^2}{s^4}) + is(6c{s^4} + 6{c^5} - 20{c^3}{s^2})
Comparing the real and imaginary parts in the above equation:
We get –
sin6θ=s(6c520c3s2+6cs4)\sin 6\theta = s(6{c^5} - 20{c^3}{s^2} + 6c{s^4})
Substitute, s2=1c2{s^2} = 1 - {c^2}
sin6θ=s(6c520c3(1c2)+6c(1c2)2)\sin 6\theta = s(6{c^5} - 20{c^3}(1 - {c^2}) + 6c{(1 - {c^2})^2})
Open the brackets, when there is a positive sign outside the bracket then the sign of the terms inside the bracket remains the same, while if there is a negative sign outside the bracket then the sign of the terms inside the bracket changes.
sin6θ=s(6c520c3+20c5+6c12c3+6c5)\sin 6\theta = s(6{c^5} - 20{c^3} + 20{c^5} + 6c - 12{c^3} + 6{c^5})
Take like terms together,
sin6θ=s(6c5+20c5+6c520c312c3+6c)\sin 6\theta = s({\underline {6{c^5} + 20{c^5} + 6c} ^5}\underline { - 20{c^3} - 12{c^3}} + 6c)
Simplify the like terms-
sin6θ=s(32c532c3+6c)\sin 6\theta = s(32{c^5} - 32{c^3} + 6c) ….(B)
Take the given expression-
sin6θsinθ\dfrac{{\sin 6\theta }}{{\sin \theta }}
Placing the values from equation (A) and (B)
sin6θsinθ=s(32c532c3+6c)s\dfrac{{\sin 6\theta }}{{\sin \theta }} = \dfrac{{s(32{c^5} - 32{c^3} + 6c)}}{s}
Common factors from the numerator and the denominator cancel each other.
sin6θsinθ=(32c532c3+6c)\Rightarrow \dfrac{{\sin 6\theta }}{{\sin \theta }} = (32{c^5} - 32{c^3} + 6c)
Replace the values from equation (A)
sin6θsinθ=(32cos5θ32cos3θ+6cosθ)\Rightarrow \dfrac{{\sin 6\theta }}{{\sin \theta }} = (32{\cos ^5}\theta - 32{\cos ^3}\theta + 6\cos \theta )
This is the required solution.
So, the correct answer is “sin6θsinθ=(32cos5θ32cos3θ+6cosθ)\dfrac{{\sin 6\theta }}{{\sin \theta }} = (32{\cos ^5}\theta - 32{\cos ^3}\theta + 6\cos \theta )”.

Note : Be careful while expansion of the sixth power. Remember the de moivre’s theorem and different identities to get the sixth term for the sum of two terms. Be careful while using the law of exponents and power while simplification.