Solveeit Logo

Question

Question: How to solve this first order linear differential equation? \( xy' - \dfrac{1}{{x + 1}}y = x...

How to solve this first order linear differential equation?
xy1x+1y=x y(1)=0   xy' - \dfrac{1}{{x + 1}}y = x \\\ y\left( 1 \right) = 0 \;

Explanation

Solution

Hint : We have to solve the given first order differential equation. We can observe that the differential equation can be written in the form of y+P(x)y=Q(x)y' + P\left( x \right)y = Q\left( x \right) . To solve such differential equations we use an integrating factor which is given as I.F.=eP(x)dxI.F. = {e^{\int {P\left( x \right)dx} }} . Here P(x)P\left( x \right) is the same function which is multiple of yy is the given differential equation. We multiply both sides of the differential equation by the integrating factor and further integrate to find the solution. We can then use the given condition y(1)=0y\left( 1 \right) = 0 to find the value of the integrating constant.

Complete step-by-step answer :
We have been given to solve the first order differential equation xy1x+1y=xxy' - \dfrac{1}{{x + 1}}y = x with the condition y(1)=0y\left( 1 \right) = 0.
The given differential equation can be written as,
xy1x+1y=x y+(1x(x+1))y=1   xy' - \dfrac{1}{{x + 1}}y = x \\\ \Rightarrow y' + \left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)y = 1 \;
This differential equation is now in the form of y+P(x)y=Q(x)y' + P\left( x \right)y = Q\left( x \right) where P(x)=(1x(x+1))P\left( x \right) = \left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right) and Q(x)=1Q\left( x \right) = 1 .
To solve such differential equations we use an integrating factor given as I.F.=eP(x)dxI.F. = {e^{\int {P\left( x \right)dx} }} .
We can find the I.F.I.F. as,
eP(x)dx=e(1x(x+1))dx{e^{\int {P\left( x \right)dx} }} = {e^{\int {\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)dx} }}
By partial fractions we can write,
(1x(x+1))=ax+bx+1 1=a(x+1)+bx   \left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right) = \dfrac{a}{x} + \dfrac{b}{{x + 1}} \\\ \Rightarrow - 1 = a\left( {x + 1} \right) + bx \;
If x=1x = 1 , then 2a+b=12a + b = - 1
If x=2x = 2 , then 3a+2b=13a + 2b = - 1
On solving we get a=1a = - 1 and b=1b = 1 .
Thus,
e(1x(x+1))dx=e(1x+1(x+1))dx=elnx+ln(x+1)=eln(1+1x)=(1+1x){e^{\int {\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)dx} }} = {e^{\int {\left( { - \dfrac{1}{x} + \dfrac{1}{{\left( {x + 1} \right)}}} \right)dx} }} = {e^{ - \ln x + \ln \left( {x + 1} \right)}} = {e^{\ln \left( {1 + \dfrac{1}{x}} \right)}} = \left( {1 + \dfrac{1}{x}} \right)
Thus, I.F.=(1+1x)I.F. = \left( {1 + \dfrac{1}{x}} \right)
We multiply the integrating factor on both sides of the equation and integrate.
(1+1x)y+(1+1x)(1x(x+1))y=(1+1x)\Rightarrow \left( {1 + \dfrac{1}{x}} \right)y' + \left( {1 + \dfrac{1}{x}} \right)\left( { - \dfrac{1}{{x\left( {x + 1} \right)}}} \right)y = \left( {1 + \dfrac{1}{x}} \right)
This can be written as,
\Rightarrow \dfrac{{d\left\\{ {\left( {1 + \dfrac{1}{x}} \right)y} \right\\}}}{{dx}} = \left( {1 + \dfrac{1}{x}} \right)
Now we integrate both sides.
\Rightarrow \int {\dfrac{{d\left\\{ {\left( {1 + \dfrac{1}{x}} \right)y} \right\\}}}{{dx}}dx} = \int {\left( {1 + \dfrac{1}{x}} \right)dx} \\\ \Rightarrow \left( {1 + \dfrac{1}{x}} \right)y = x + \ln x + C \;
We can find the value of CC using the condition y(1)=0y\left( 1 \right) = 0.
(1+1)×0=1+ln1+C C+1=0 C=1   \Rightarrow \left( {1 + 1} \right) \times 0 = 1 + \ln 1 + C \\\ \Rightarrow C + 1 = 0 \\\ \Rightarrow C = - 1 \;
Thus we get,
(1+1x)y=x+lnx1\left( {1 + \dfrac{1}{x}} \right)y = x + \ln x - 1
Or we can write the function as,
y=x(x+lnx1)(x+1)y = \dfrac{{x\left( {x + \ln x - 1} \right)}}{{\left( {x + 1} \right)}}
So, the correct answer is “ y=x(x+lnx1)(x+1)y = \dfrac{{x\left( {x + \ln x - 1} \right)}}{{\left( {x + 1} \right)}} ”.

Note : We solved the differential equation using the integrating factor. The integrating factor of the form I.F.=eP(x)dxI.F. = {e^{\int {P\left( x \right)dx} }} is used for the differential equation of the form y+P(x)y=Q(x)y' + P\left( x \right)y = Q\left( x \right) and may not work properly for other forms of differential equation. We have to be careful while following each step in the solution.