Solveeit Logo

Question

Question: How to simplify \({\cos ^2}2\theta - {\sin ^2}2\theta \) ?...

How to simplify cos22θsin22θ{\cos ^2}2\theta - {\sin ^2}2\theta ?

Explanation

Solution

This is a trigonometric expression this can be simplified by using some of the trigonometric formulas. First of all add sin2θ{\sin ^2}\theta and subtract the same so that the expression remains the same. Then, put the value of sin2θ\sin 2\theta in the expression to get the required result.

Formula used: sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1

Complete step by step answer:
Given: we have to simplify cos22θsin22θ{\cos ^2}2\theta - {\sin ^2}2\theta .
We have to add and subtract sin22θ{\sin ^2}2\theta to the given expression. Then, we get
=cos22θsin22θ= {\cos ^2}2\theta - {\sin ^2}2\theta
=cos22θ+sin22θsin22θsin22θ= {\cos ^2}2\theta + {\sin ^2}2\theta - {\sin ^2}2\theta - {\sin ^2}2\theta
We know a trigonometric formula sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1. By applying this formula, the above expression become
=12sin22θ= 1 - 2{\sin ^2}2\theta
Now, put the value of sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta in this expression and then we get
=12(2cosθsinθ)2 =12×4cos2θsin2θ =18cos2θsin2θ = 1 - 2{\left( {2\cos \theta \sin \theta } \right)^2} \\\ = 1 - 2 \times 4{\cos ^2}\theta {\sin ^2}\theta \\\ = 1 - 8{\cos ^2}\theta {\sin ^2}\theta

Thus, the expression cos22θsin22θ{\cos ^2}2\theta - {\sin ^2}2\theta can be simplified to 18sin2θcos2θ1 - 8{\sin ^2}\theta {\cos ^2}\theta .

Note: Alternatively, this expression can be simplified as firstly expand the expression using a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right). Expanding cos22θsin22θ{\cos ^2}2\theta - {\sin ^2}2\theta we get (cos2θ+sin2θ)(cos2θsin2θ)\left( {\cos 2\theta + \sin 2\theta } \right)\left( {\cos 2\theta - \sin 2\theta } \right). Then by applying some trigonometric formula that is given above we have to expand this expression and then multiplying and manipulating the terms we simplify the above expression.
While solving the trigonometric equation we have to apply some other trigonometric formula that is
(1) sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1
(2) cosec2θcot2θ=1\cos e{c^2}\theta - {\cot ^2}\theta = 1
Proof of the given formula sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta .
We have studied a trigonometric formula sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B.
We can write 2θ2\theta as θ+θ\theta + \theta . We have A=θA = \theta and B=θB = \theta . So, by applying above formula we can write
sin(θ+θ)=sinθcosθ+cosθsinθ sin2θ=2sinθcosθ \Rightarrow \sin \left( {\theta + \theta } \right) = \sin \theta \cos \theta + \cos \theta \sin \theta \\\ \Rightarrow \sin 2\theta = 2\sin \theta \cos \theta
Hence, the above given formula is proved.
Similarly, we can prove cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta .
Proof of the given formula cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta .
We have studied a trigonometric formula cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B.
We can write 2θ2\theta as θ+θ\theta + \theta . We have A=θA = \theta and B=θB = \theta . So, by applying above formula we can write
cos(θ+θ)=cosθcosθsinθsinθ cos2θ=cos2θsin2θ  \Rightarrow \cos \left( {\theta + \theta } \right) = \cos \theta \cos \theta - \sin \theta \sin \theta \\\ \Rightarrow \cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \\\
Hence, the above given formula is proved.