Solveeit Logo

Question

Question: How to prove? \[\tan A(1 + \sec 2A) = \tan 2A\]...

How to prove? tanA(1+sec2A)=tan2A\tan A(1 + \sec 2A) = \tan 2A

Explanation

Solution

In this question we will use the double angle formulas and substitute them accordingly to simplify the expression so that we get the simplified expression which is equal to the right-hand side of the equation.

Formulae used:
secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta
cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta}}
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta

Complete step-by-step answer:
We have the expression as:
tanA(1+sec2A)=tan2A\tan A(1 + \sec 2A) = \tan 2A
On taking the left-hand side of the equation, we get:
tanA(1+sec2A)\Rightarrow \tan A(1 + \sec 2A)
Now we know that secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}therefore, we get:
tanA(1+1cos2A)\Rightarrow \tan A\left( {1 + \dfrac{1}{{\cos 2A}}} \right)
Now we know that cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta therefore, we get:
tanA(1+1cos2Asin2A)\Rightarrow \tan A\left( {1 + \dfrac{1}{{{{\cos }^2}A - {{\sin }^2}A}}} \right)
on taking the lowest common multiple for the term, we get:
tanA(1+cos2Asin2Acos2Asin2A)\Rightarrow \tan A\left( {\dfrac{{1 + {{\cos }^2}A - {{\sin }^2}A}}{{{{\cos }^2}A - {{\sin }^2}A}}} \right)
We know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1therefore, on substituting this instead of 11 in the numerator, we get:
tanA(sin2A+cos2A+cos2Asin2Acos2Asin2A)\Rightarrow \tan A\left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A + {{\cos }^2}A - {{\sin }^2}A}}{{{{\cos }^2}A - {{\sin }^2}A}}} \right)
on simplifying the numerator, we get:
tanA(cos2A+cos2Acos2Asin2A)\Rightarrow \tan A\left( {\dfrac{{{{\cos }^2}A + {{\cos }^2}A}}{{{{\cos }^2}A - {{\sin }^2}A}}} \right)
On adding the terms in the numerator, we get:
tanA(2cos2Acos2Asin2A)\Rightarrow \tan A\left( {\dfrac{{2{{\cos }^2}A}}{{{{\cos }^2}A - {{\sin }^2}A}}} \right)
Now we know that tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}therefore, we get:
(sinAcosA)(2cos2Acos2Asin2A)\Rightarrow \left( {\dfrac{{\sin A}}{{\cos A}}} \right)\left( {\dfrac{{2{{\cos }^2}A}}{{{{\cos }^2}A - {{\sin }^2}A}}} \right)
On cancelling the terms, we get:
sinA(2cosAcos2Asin2A)\Rightarrow \sin A\left( {\dfrac{{2\cos A}}{{{{\cos }^2}A - {{\sin }^2}A}}} \right)
Now on re-writing the value of cos2Asin2A{\cos ^2}A - {\sin ^2}Aas cos2A\cos 2A, we get:
sinA(2cosAcos2A)\Rightarrow \sin A\left( {\dfrac{{2\cos A}}{{\cos 2A}}} \right)
On rearranging the expression, we get:
2sinAcosAcos2A\Rightarrow \dfrac{{2\sin A\cos A}}{{\cos 2A}}
Now we know that sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta therefore, on using this, we get:
sin2Acos2A\Rightarrow \dfrac{{\sin 2A}}{{\cos 2A}}
We know that tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} therefore, the equation becomes:

tan2A \Rightarrow \tan 2A, which is the left-hand side of the expression, hence tanA(1+sec2A)=tan2A\tan A(1 + \sec 2A) = \tan 2A is proved.

Note:
It is to be remembered that to add two or more fractions, the denominator of both them should be the same, if the denominator is not the same, the lowest common multiple known as L.C.M should be taken.
The various trigonometric identities and formulae should be remembered while doing these types of sums. the various Pythagorean identities should also be remembered while doing these type of questions
To simplify any given equation, it is good practice to convert all the identities into sin\sin and cos\cos for simplifying.
If there is nothing to simplify, then only you should use the double angle formulas to expand the given equation.