Solveeit Logo

Question

Question: How to integrate \(\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)\)?...

How to integrate sin(12x)cos(1+2x)\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)?

Explanation

Solution

First, use trigonometry identity (II) to find the value of sin(12x)cos(1+2x)\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) and put the value of sin(12x)cos(1+2x)\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) in given integral. Then, use distributive property in integral. Next, use property (III) to split the integrals. The, solve the integral using integration formula (IV). Substitute all the values in the combined integral and get the required result.

Formula used:
1. The integral of the product of a constant and a function = the constant ×\times integral of the function.
i.e., (kf(x)dx)=kf(x)dx\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} , where kk is a constant.
2. Trigonometric identity: sinAcosB=12[sin(A+B)+sin(AB)]\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]
3. The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., [f(x)±g(x)]dx=f(x)dx±g(x)dx\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx}
4. Integration formula: xndx=xn+1n+1+C,n1\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1 and sinxdx=cosx+C\int {\sin xdx} = - \cos x + C

Complete step by step solution:
We have to find sin(12x)cos(1+2x)dx\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} …(i)
Use identity sinAcosB=12[sin(A+B)+sin(AB)]\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right], by putting A=12xA = 1 - 2x and B=1+2xB = 1 + 2x.
sin(12x)cos(1+2x)=12[sin(12x+1+2x)+sin(12x12x)]\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( {1 - 2x + 1 + 2x} \right) + \sin \left( {1 - 2x - 1 - 2x} \right)} \right]
Add the terms in the bracket.
sin(12x)cos(1+2x)=12[sin(2)+sin(4x)]\Rightarrow \sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( 2 \right) + \sin \left( { - 4x} \right)} \right]
Use identity sin(x)=sinx\sin \left( { - x} \right) = - \sin x in above equation.
sin(12x)cos(1+2x)=12[sin(2)sin(4x)]\Rightarrow \sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( 2 \right) - \sin \left( {4x} \right)} \right]
Now, put the value of sin(12x)cos(1+2x)\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) in integral (i).
sin(12x)cos(1+2x)dx=12[sin(2)sin(4x)]dx\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\dfrac{1}{2}\left[ {\sin \left( 2 \right) - \sin \left( {4x} \right)} \right]dx} …(ii)
Use distributive property in integral (ii).
sin(12x)cos(1+2x)dx=[12sin(2)12sin(4x)]dx\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\left[ {\dfrac{1}{2}\sin \left( 2 \right) - \dfrac{1}{2}\sin \left( {4x} \right)} \right]dx} …(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., [f(x)±g(x)]dx=f(x)dx±g(x)dx\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx}
So, in above integral (iii), we can use above property
sin(12x)cos(1+2x)dx=12sin(2)dx12sin(4x)dx\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\dfrac{1}{2}\sin \left( 2 \right)dx} - \int {\dfrac{1}{2}\sin \left( {4x} \right)dx} …(iv)
Now, using the property that the integral of the product of a constant and a function = the constant ×\times integral of the function.
i.e., (kf(x)dx)=kf(x)dx\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx}
So, in above integral (iv), we can use above property
sin(12x)cos(1+2x)dx=12sin(2)dx12sin(4x)dx\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{2}\sin \left( 2 \right)\int {dx} - \dfrac{1}{2}\int {\sin \left( {4x} \right)dx} …(v)
Now, using the integration formula xndx=xn+1n+1+C,n1\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1 and sinxdx=cosx+C\int {\sin xdx} = - \cos x + C in integration (v), we get
sin(12x)cos(1+2x)dx=12sin(2)x12×cos(4x)4+C\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{2}\sin \left( 2 \right)x - \dfrac{1}{2} \times \dfrac{{\cos \left( {4x} \right)}}{4} + C
It can be written as sin(12x)cos(1+2x)dx=18[4sin(2)x+cos(4x)]+C\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{8}\left[ {4\sin \left( 2 \right)x + \cos \left( {4x} \right)} \right] + C.

Hence, sin(12x)cos(1+2x)dx=18[4sin(2)x+cos(4x)]+C\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{8}\left[ {4\sin \left( 2 \right)x + \cos \left( {4x} \right)} \right] + C.

Note: To evaluate integrals of the form sinmxcosnxdx\int {\sin mx\cos nxdx} , sinmxsinnxdx\int {\sin mx\sin nxdx} , cosmxcosnxdx\int {\cos mx} \cos nxdx and cosmxsinnxdx\int {\cos mx\sin nxdx} , we use the following trigonometric identities:
2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)
2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)
2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)
2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)