Question
Question: How to integrate \(\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)\)?...
How to integrate sin(1−2x)cos(1+2x)?
Solution
First, use trigonometry identity (II) to find the value of sin(1−2x)cos(1+2x) and put the value of sin(1−2x)cos(1+2x) in given integral. Then, use distributive property in integral. Next, use property (III) to split the integrals. The, solve the integral using integration formula (IV). Substitute all the values in the combined integral and get the required result.
Formula used:
1. The integral of the product of a constant and a function = the constant × integral of the function.
i.e., ∫(kf(x)dx)=k∫f(x)dx, where k is a constant.
2. Trigonometric identity: sinAcosB=21[sin(A+B)+sin(A−B)]
3. The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
4. Integration formula: ∫xndx=n+1xn+1+C,n=−1 and ∫sinxdx=−cosx+C
Complete step by step solution:
We have to find ∫sin(1−2x)cos(1+2x)dx…(i)
Use identity sinAcosB=21[sin(A+B)+sin(A−B)], by putting A=1−2x and B=1+2x.
sin(1−2x)cos(1+2x)=21[sin(1−2x+1+2x)+sin(1−2x−1−2x)]
Add the terms in the bracket.
⇒sin(1−2x)cos(1+2x)=21[sin(2)+sin(−4x)]
Use identity sin(−x)=−sinx in above equation.
⇒sin(1−2x)cos(1+2x)=21[sin(2)−sin(4x)]
Now, put the value of sin(1−2x)cos(1+2x) in integral (i).
∫sin(1−2x)cos(1+2x)dx=∫21[sin(2)−sin(4x)]dx…(ii)
Use distributive property in integral (ii).
∫sin(1−2x)cos(1+2x)dx=∫[21sin(2)−21sin(4x)]dx…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
So, in above integral (iii), we can use above property
∫sin(1−2x)cos(1+2x)dx=∫21sin(2)dx−∫21sin(4x)dx…(iv)
Now, using the property that the integral of the product of a constant and a function = the constant × integral of the function.
i.e., ∫(kf(x)dx)=k∫f(x)dx
So, in above integral (iv), we can use above property
∫sin(1−2x)cos(1+2x)dx=21sin(2)∫dx−21∫sin(4x)dx…(v)
Now, using the integration formula ∫xndx=n+1xn+1+C,n=−1 and ∫sinxdx=−cosx+C in integration (v), we get
∫sin(1−2x)cos(1+2x)dx=21sin(2)x−21×4cos(4x)+C
It can be written as ∫sin(1−2x)cos(1+2x)dx=81[4sin(2)x+cos(4x)]+C.
Hence, ∫sin(1−2x)cos(1+2x)dx=81[4sin(2)x+cos(4x)]+C.
Note: To evaluate integrals of the form ∫sinmxcosnxdx, ∫sinmxsinnxdx, ∫cosmxcosnxdx and ∫cosmxsinnxdx, we use the following trigonometric identities:
2sinAcosB=sin(A+B)+sin(A−B)
2cosAsinB=sin(A+B)−sin(A−B)
2cosAcosB=cos(A+B)+cos(A−B)
2sinAsinB=cos(A−B)−cos(A+B)