Solveeit Logo

Question

Question: How to Integrate \[\dfrac{7}{2}\] & \[\dfrac{1}{2}\] of \[\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}...

How to Integrate 72\dfrac{7}{2} & 12\dfrac{1}{2} of 1(5+4xx2)32dx\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx?

Explanation

Solution

This question is from the topic of integration. In solving this question, we will use a substitution method to solve this question. First, we make the term (5+4xx2)\left( 5+4x-{{x}^{2}} \right) simple. After that, we will take (x2)\left( x-2 \right) as 3sint3\sin t and differentiate them. After that, we use them for further integration. After solving the further integration, we will get our answer.

Complete step-by-step solution:
Let us solve this question.
We can write 5+4xx25+4x-{{x}^{2}} as
5+4xx2=9(44x+x2)5+4x-{{x}^{2}}=9-\left( 4-4x+{{x}^{2}} \right)
Using the formula (ab)2=(ba)2=a22×a×b+b2{{\left( a-b \right)}^{2}}={{\left( b-a \right)}^{2}}={{a}^{2}}-2\times a\times b+{{b}^{2}}, we can write the above as
5+4xx2=9(x2)2\Rightarrow 5+4x-{{x}^{2}}=9-{{\left( x-2 \right)}^{2}}
The above can also be written as
5+4xx2=32(x2)2\Rightarrow 5+4x-{{x}^{2}}={{3}^{2}}-{{\left( x-2 \right)}^{2}}
Now, we will do the substitution.
Let us take (x2)\left( x-2 \right) as 3sint3\sin t
So, we can write
(x2)=3sint\left( x-2 \right)=3\sin t
Now, differentiating both sides of the above equation, we get
dx=3costdtdx=3\cos tdt
Now, we know that we have to integrate the term 1(5+4xx2)32dx\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx having limits as 72\dfrac{7}{2} and 12\dfrac{1}{2}. So, let us write
I=12721(5+4xx2)32dxI=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx}
The above can also be written as
I=12721(32(x2)2)32dx\Rightarrow I=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( x-2 \right)}^{2}} \right)}^{\dfrac{3}{2}}}}dx}
Now, putting the values of (x2)\left( x-2 \right) as 3sint3\sin t and dxdx as 3costdt3\cos tdt that we have found above, we can write
I=12721(32(3sint)2)323costdt\Rightarrow I=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( 3\sin t \right)}^{2}} \right)}^{\dfrac{3}{2}}}}3\cos tdt}
We are changing the variable, so limits will also change according to them. We can write
At x=72x=\dfrac{7}{2},
(722)=3sint\left( \dfrac{7}{2}-2 \right)=3\sin t
(12)=sint\Rightarrow \left( \dfrac{1}{2} \right)=\sin t
t=π6\Rightarrow t=\dfrac{\pi }{6}
So, at x=72x=\dfrac{7}{2}, t=π6t=\dfrac{\pi }{6}
And at x=12x=\dfrac{1}{2},
(122)=3sint\left( \dfrac{1}{2}-2 \right)=3\sin t
(32)=3sint\Rightarrow \left( -\dfrac{3}{2} \right)=3\sin t
(12)=sint\Rightarrow \left( -\dfrac{1}{2} \right)=\sin t
t=π6\Rightarrow t=-\dfrac{\pi }{6}
So, at x=12x=\dfrac{1}{2}, t=π6t=-\dfrac{\pi }{6}
Now, we can write I=12721(32(3sint)2)323costdtI=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( 3\sin t \right)}^{2}} \right)}^{\dfrac{3}{2}}}}3\cos tdt} as
I=π6π61(32(3sint)2)323costdt\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( 3\sin t \right)}^{2}} \right)}^{\dfrac{3}{2}}}}3\cos tdt}
I=π6π61(3232sin2t)323costdt\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\left( {{3}^{2}}-{{3}^{2}}{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}3\cos tdt}
I=π6π6132×32(1sin2t)323costdt\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2\times \dfrac{3}{2}}}{{\left( 1-{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}3\cos tdt}
I=π6π6133(1sin2t)323costdt\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{3}}{{\left( 1-{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}3\cos tdt}
The above can also be written as
I=π6π6132(1sin2t)32costdt\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\left( 1-{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}\cos tdt}
Using the formula (1sin2t)=cos2t\left( 1-{{\sin }^{2}}t \right)={{\cos }^{2}}t, we can write
I=π6π6132(cos2t)32costdt\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\left( {{\cos }^{2}}t \right)}^{\dfrac{3}{2}}}}\cos tdt}
I=π6π6132cos2×32tcostdt\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\cos }^{2\times \dfrac{3}{2}}}t}\cos tdt}
I=π6π6132cos3tcostdt\Rightarrow I=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\cos }^{3}}t}\cos tdt}
The above can also be written as
I=π6π6132cos2tdt\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\cos }^{2}}t}dt}
I=132π6π61cos2tdt\Rightarrow I=\dfrac{1}{{{3}^{2}}}\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\cos }^{2}}t}dt}
I=19π6π61cos2tdt\Rightarrow I=\dfrac{1}{9}\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\cos }^{2}}t}dt}
secx=1cosx\sec x=\dfrac{1}{\cos x}
Using the formula secx=1cosx\sec x=\dfrac{1}{\cos x}, we can the above as
I=19π6π6sec2tdt\Rightarrow I=\dfrac{1}{9}\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{{{\sec }^{2}}tdt}
Using the formula sec2xdx=tanx\int{{{\sec }^{2}}xdx}=\tan x, we can write the above as
I=19[tant]π6π6\Rightarrow I=\dfrac{1}{9}\left[ \tan t \right]_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}
The above can be written as
I=19[tanπ6tan(π6)]\Rightarrow I=\dfrac{1}{9}\left[ \tan \dfrac{\pi }{6}-\tan \left( -\dfrac{\pi }{6} \right) \right]
Now, using the formula tan(x)=tanx\tan \left( -x \right)=-\tan x, we can write
I=19[tanπ6+tanπ6]\Rightarrow I=\dfrac{1}{9}\left[ \tan \dfrac{\pi }{6}+\tan \dfrac{\pi }{6} \right]
The above can be written as
I=29[tanπ6]\Rightarrow I=\dfrac{2}{9}\left[ \tan \dfrac{\pi }{6} \right]
Using the formula tanπ6=13\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}, we can write
I=2913=293\Rightarrow I=\dfrac{2}{9}\dfrac{1}{\sqrt{3}}=\dfrac{2}{9\sqrt{3}}
Hence, we have integrated the term 12721(5+4xx2)32dx\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx} and we have got our answer as 293\dfrac{2}{9\sqrt{3}}

Note: We should have a better knowledge in the topic of integration for solving this type of question.
Remember the following formulas to solve this type of question easily:
tanπ6=13\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}
tan(x)=tanx\tan \left( -x \right)=-\tan x
sec2xdx=tanx\int{{{\sec }^{2}}xdx}=\tan x
secx=1cosx\sec x=\dfrac{1}{\cos x}
(ab)2=(ba)2=a22×a×b+b2{{\left( a-b \right)}^{2}}={{\left( b-a \right)}^{2}}={{a}^{2}}-2\times a\times b+{{b}^{2}}
(1sin2t)=cos2t\left( 1-{{\sin }^{2}}t \right)={{\cos }^{2}}t