Solveeit Logo

Question

Question: How to get the surface area of a cone using integral calculus \[?\]...

How to get the surface area of a cone using integral calculus ??

Explanation

Solution

This question describes the operation of finding the area of a circle and lateral surface of the cone. We need to know the basic integration and differentiation. Also, we need to know the process of findingsinθ\sin \theta , cosθ\cos \theta and tanθ\tan \theta from the triangle.

We need to know trigonometric conditions to make an easy calculation.

Complete step by step solution:

In the given question we have to find the total surface area of a cone using integral calculus. For finding the surface area the following figure will help us,

In the above figure,

CC is the center of the bottom of the cone,

llis the length of slant edge in the cone,

hhis the vertical height of the cone,

α\alpha is the angle between OCOCand OBOB,

dldl is the small part of the slant edge,

dxdx is the small part of vertical height,

rris the radius of the bottom cone.

We know that the bottom of the cone is a circle. So, we have to find the area of the circle. For finding the area of the circle we assume the following figure,

The above figure was drawn with the reference offig:1fig:1. From thefig:2fig:2, we get the following equation

x2+y2=r2(1){x^2} + {y^2} = {r^2} \to \left( 1 \right) (By Pythagoras theorem)

The above equation can also be written as

y2=r2x2{y^2} = {r^2} - {x^2}

y=r2x2y = \sqrt {{r^2} - {x^2}}

The area of the circle,

Acircle{A_{circle}}=r2x2dx\int {\sqrt {{r^2} - {x^2}} } dx

Let’s taker2{r^2}it as a common term, so we get

Acircle=r2(1x2r2)dx{A_{circle}} = \int {\sqrt {{r^2}\left( {1 - \dfrac{{{x^2}}}{{{r^2}}}} \right)} dx}

We know thatr2=r\sqrt {{r^2}} = r

Acircle=r(1x2r2)dx(2){A_{circle}} = r\int {\sqrt {\left( {1 - \dfrac{{{x^2}}}{{{r^2}}}} \right)} dx} \to \left( 2 \right)

If we consider the limit betweenr - randrr we can evaluate the area of half of the circle.
Fromfig:2fig:2we get the following values,

cosθ=adjopposite=xr xr=cos2θ=1sin2θ \cos \theta = \dfrac{{adj}}{{opposite}} = \dfrac{x}{r} \\\ \dfrac{x}{r} = {\cos ^2}\theta = 1 - {\sin ^2}\theta \\\

θ=arcCos(xr)\theta = arc\operatorname{Cos} \left( {\dfrac{x}{r}} \right)

Let’s takex=rx = - r

θ=arcCos(rr)\theta = arc\operatorname{Cos} \left( {\dfrac{{ - r}}{r}} \right)
θ=arcCos(1)\theta = arc\operatorname{Cos} \left( { - 1} \right)

We know that, arcCos(1)=πarc\operatorname{Cos} ( - 1) = \pi

So, θ=π\theta = \pi

Let’s take x=rx = r

θ=arcCos(rr)\theta = arc\operatorname{Cos} \left( {\dfrac{r}{r}} \right)
θ=arcCos(1)\theta = arc\operatorname{Cos} \left( 1 \right)

We know that, arcCos(1)=0arc\operatorname{Cos} (1) = 0

So, θ=0\theta = 0

We know that,

cosθ=xr\cos \theta = \dfrac{x}{r}

Let’s differentiate the above equation, we get

sinθdθ=1rdx - \sin \theta d\theta = \dfrac{1}{r}dx
So, we get

dxr=sinθdθ dx=rsinθdθ  \dfrac{{dx}}{r} = - \sin \theta d\theta \\\ dx = - r\sin \theta d\theta \\\

So, the equation(2)\left( 2 \right)is,

Acircle=r(1x2r2)dx{A_{circle}} = r\int {\sqrt {\left( {1 - \dfrac{{{x^2}}}{{{r^2}}}} \right)} dx}

(For finding the area of half of the circle the limit will beπto0\pi to0.)

Let’s substitute x2r2=1sin2θ,dx=rsinθdθ\dfrac{{{x^2}}}{{{r^2}}} = 1 - {\sin ^2}\theta ,dx = - r\sin \theta d\theta in the above equation, we get

12Acircle=rπ01(1sin2θ)(rsinθdθ) 12Acircle=rπ011+sin2θ(rsinθdθ) \dfrac{1}{2}{A_{circle}} = r\int\limits_\pi ^0 {\sqrt {1 - (1 - {{\sin }^2}\theta )} ( - r\sin \theta d\theta )} \\\ \dfrac{1}{2}{A_{circle}} = r\int\limits_\pi ^0 {\sqrt {1 - 1 + {{\sin }^2}\theta } ( - r\sin \theta d\theta )} \\\

Here, rris constant, so it can be taken to the outside of the interval.

)$$ $$\dfrac{1}{2}{A_{circle}} = - {r^2}\int\limits_\pi ^0 {\sin \theta .\sin \theta d\theta } $$ $$\dfrac{1}{2}{A_{circle}} = - {r^2}\int\limits_\pi ^0 {{{\sin }^2}\theta d\theta } $$ We know that, $${\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}$$. So, we get $$\dfrac{1}{2}{A_{circle}} = - {r^2}\int\limits_\pi ^0 {\dfrac{{1 - \cos 2\theta }}{2}d\theta } = - {r^2}\int\limits_\pi ^0 {\left( {\dfrac{1}{2} - \dfrac{{\cos 2\theta }}{2}} \right)d\theta } $$ From equation$$\left( 1 \right)$$ $${x^2} + {y^2} = {r^2} \to \left( 3 \right)$$ Let’s differentiate the above equation, we get $$2xdx + 2ydy = 2rdr$$ In the above equation$$r$$is constant so, $$dr = 0$$. So, the above equation becomes, $$2xdx + 2ydy = 0$$

2xdx = - 2ydy \\
\dfrac{{dy}}{{dx}} = \dfrac{{ - 2x}}{{2y}} = \dfrac{{ - x}}{y} \to \left( 4 \right) \\

From equation$$\left( 1 \right)$$

{y^2} = {r^2} - {x^2} \\
y = \sqrt {{r^2} - {x^2}} \\

By substituting the above-mentioned value in the equation$$\left( 4 \right)$$we get, $$\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{{\sqrt {{r^2} - {x^2}} }}$$ The arc length L is $$L = \int {ds} $$ Here, $$ds = \sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} dx$$ Let’s substitute the$$\dfrac{{dy}}{{dx}}$$value in the above equation, we get

ds = \sqrt {1 + {{\left( {\dfrac{{ - x}}{{\sqrt {{r^2} - {x^2}} }}} \right)}^2}} dx \\

ds = \sqrt {1 + \dfrac{{{x^2}}}{{{r^2} - {x^2}}}} dx \\

ds = \sqrt {\dfrac{{{r^2} - {x^2} + {x^2}}}{{{r^2} - {x^2}}}} dx \\

ds = \sqrt {\dfrac{{{r^2}}}{{{r^2} - {x^2}}}} dx \\

Half of the circumference of the circle is given below, $$L = \int\limits_{ - r}^r {ds} $$ By substituting the value of$$ds$$ we get, $$L = \int\limits_{ - r}^r {\sqrt {\dfrac{{{r^2}}}{{{r^2} - {x^2}}}} } dx$$ We know that, $$x = r\cos \theta $$, $$dx = - r\sin \theta d\theta $$so, the above equation becomes $$L = \int\limits_\pi ^0 {\sqrt {\dfrac{{{r^2}}}{{{r^2} - {x^2}}}} } \left( { - r\sin \theta } \right)d\theta

L=π0r2r2(rcosθ)2(rsinθ)dθL = \int\limits_\pi ^0 {\sqrt {\dfrac{{{r^2}}}{{{r^2} - {{\left( {r\cos \theta } \right)}^2}}}} } \left( { - r\sin \theta } \right)d\theta

L=π0r2r2(1cos2θ)(rsinθ)dθL = \int\limits_\pi ^0 {\sqrt {\dfrac{{{r^2}}}{{{r^2}\left( {1 - {{\cos }^2}\theta } \right)}}} } \left( { - r\sin \theta } \right)d\theta

We know that, 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta so, the above equation become,

L=π0r2r2(sin2θ)(rsinθ)dθL = \int\limits_\pi ^0 {\sqrt {\dfrac{{{r^2}}}{{{r^2}\left( {{{\sin }^2}\theta } \right)}}} } \left( { - r\sin \theta } \right)d\theta

L=rπ01sinθ.sinθdθL = - r\int\limits_\pi ^0 {\dfrac{1}{{\sin \theta }}} .\sin \theta d\theta
L=rπ01dθL = - r\int\limits_\pi ^0 1 d\theta

L=r[θ]π0=r[0π] L=πr L = - r\left[ \theta \right]_\pi ^0 = - r\left[ {0 - \pi } \right] \\\ L = \pi r \\\

So, the full circumference of the circle is2L=2πr2L = 2\pi r

So, the lateral surface area of the cone
S=0h2πf(x)dlS = \int\limits_0^h {2\pi f\left( x \right)} dl
Here,y=f(x)y = f\left( x \right)

From the given figure

cosα=hl l=hcosα dl=dhcosα=dxcosα tanα=rh=f(x)x \cos \alpha = \dfrac{h}{l} \\\ l = \dfrac{h}{{\cos \alpha }} \\\ dl = \dfrac{{dh}}{{\cos \alpha }} = \dfrac{{dx}}{{\cos \alpha }} \\\ \tan \alpha = \dfrac{r}{h} = \dfrac{{f\left( x \right)}}{x} \\\

f(x)=xtanαf\left( x \right) = x\tan \alpha

By using the above values we get,

S=0h2πxtanαdxcosαS = \int\limits_0^h {2\pi x\tan \alpha \dfrac{{dx}}{{\cos \alpha }}}

S=2πtanαcosα0hxdxS = 2\pi \dfrac{{\tan \alpha }}{{\cos \alpha }}\int\limits_0^h {xdx}

S=2π(rh)(hl)[x22]0h S=2π(rlh2)[h22022] S=2πr   S = 2\pi \dfrac{{\left( {\dfrac{r}{h}} \right)}}{{\left( {\dfrac{h}{l}} \right)}}\left[ {\dfrac{{{x^2}}}{2}} \right]_0^h \\\ S = 2\pi \left( {\dfrac{{rl}}{{{h^2}}}} \right)\left[ {\dfrac{{{h^2}}}{2} - \dfrac{{{0^2}}}{2}} \right] \\\ S = 2\pi r \\\ \\\

So, the total surface area of the cone==total surface area of the circle++total surface area of the lateral surface.

The total surface area of the cone=πr2+2πr\pi {r^2} + 2\pi r

Note: We have to consider the bottom of the cone as a circle. At first, we want to find the area of a circle, and next, we want to find the area of the lateral surface. Also, note that the integral of cosθ\cos \theta issinθ\sin \theta and the differentiation of cosθ\cos \theta issinθ- \sin \theta. If a constant term is present inside the integral, we can take the term outside of the integral.