Question
Question: How to find the value of \[\sin 4x,\cos 4x,\cot 4x\] ?...
How to find the value of sin4x,cos4x,cot4x ?
Solution
First we have to define what the terms we need to solve the problem are. We need to find the value of sin4x,cos4x,cot4x. First of all we need to analyse the theta value by separating the theta value as sum identity or multiple identity we can simplify and find the value. We also use basic trigonometric formula to solve basic terms and we also use basic algebraic formula.
Formula to be used:
sin(A+B)=sinAcosB+cosAsinB
cos(A+B)=cosAcosB+sinAsinB
cotA=tanA1
tan(A+B)=1−tanAtanBtanA+tanB
sin2A=2sinAcosA
cos2A=2cos2A−1
tan2A=1−tan2A2tanA
(a+b)2=a2+b2−2ab
Complete step by step answer:
To find the value of sin4x, we use the sum identity of sin,
sin(A+B)=sinAcosB+cosAsinB
Splitting 4x as 2x+2x
sin4x=sin(2x+2x)
Now applying the sum identity of sin,
sin(A+B)=sinAcosB+cosAsinB
We know that A=2x,B=2x
sin(2x+2x)=sin2xcos2x+cos2xsin2x
Adding R.H.S we get,
sin(2x+2x)=2sin2xcos2x
Applying the sin2x=2sinxcosxand cos2x=2cos2x−1 formulae
sin4x=2(2sinxcosx)(2cos2x−1)
Multiplying we get,
sin4x=4sinxcosx(2cos2x−1)
Simplifying we get,
sin4x=8sinxcos3x−4sinxcosx
Hence, sin4x=8sinxcos3x−4sinxcosx
Now, solving cos4x,
Changing cos4xas cos2(2x)
We know that, cos2A=2cos2A−1
Considering A=2x,
Substituting the formula in cos4x,
cos4x=2cos22x−1
Again substituting cos2x formula,
We get,
cos4x=2(2cos2x−1)2−1
Substituting (a+b)2=a2+b2−2ab in the above equation
cos4x=2((2cos2x)2+1−2(2cos2x)(1))−1
Simplifying we get,
cos4x=2(4cos4x+1−4cos2x)−1
cos4x=8cos4x+2−8cos2x−1
Finally,
cos4x=8cos4x−8cos2x+1
Hence, cos4x=8cos4x−8cos2x+1
Now, solving cot4x
We know that, cotA=tanA1
So, writing cot4x as tan4x1
Splitting tan4xastan2(2x),
Then substituting tan2A=1−tan2A2tanA formula here
We know that A=2x
tan2(2x)=1−tan22x2tan2x
Again using tan2A=1−tan2A2tanA formula,
We get,
tan4x=21−(1−tan2x2tanx)21−tan2x2tanx
Giving the square inside the bracket in denominator
tan4x=21−(1−tan2x)22tanx21−tan2x2tanx
Simplifying denominator,
tan4x=2(1−tan2x)2(1−tan2x)2−2tanx21−tan2x2tanx
Expanding the denominators’ numerator in (a+b)2=a2+b2−2ab formula,
tan4x=2(1−tan2x)21+tan4x−2tan2x−2tanx21−tan2x2tanx
Writing the denominator in multiplication by reciprocal,
tan4x=1−tan2x4tanx×1+tan4x−4tan2x(1−tan2x)2
Cancelling 1−tan2x
tan4x=1+tan4x−4tan2x4tanx(1−tan2x)
Simplifying we get,
tan4x=1+tan4x−4tan2x4tanx−4tan2x
Finally substituting tan4xin cotx formula
We know that reciprocal of tan4xiscotx
cot4x=4tanx−4tan2x1+tan4x−4tan2x
Finally, cot4x=4tanx−4tan2x1+tan4x−4tan2x
Hence found the values.
Note:
We have found the values of sin4x,cos4x,cot4x in one way. But it has more than one way to find the values. For example, we can find sin4x by sin(3x+x) and sin2(2x) same thing we can use in cos4x also. In cot4x we can find the values in terms of cotx or tanx. In trigonometry we have many ways to find an answer. So, we need not to depend on one way we have many ways to solve it.