Solveeit Logo

Question

Question: How to find the value of \[\sin 4x,\cos 4x,\cot 4x\] ?...

How to find the value of sin4x,cos4x,cot4x\sin 4x,\cos 4x,\cot 4x ?

Explanation

Solution

First we have to define what the terms we need to solve the problem are. We need to find the value of sin4x,cos4x,cot4x\sin 4x,\cos 4x,\cot 4x. First of all we need to analyse the theta value by separating the theta value as sum identity or multiple identity we can simplify and find the value. We also use basic trigonometric formula to solve basic terms and we also use basic algebraic formula.
Formula to be used:
sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
cos(A+B)=cosAcosB+sinAsinB\cos (A + B) = \cos A\cos B + \sin A\sin B
cotA=1tanA\cot A = \dfrac{1}{{\tan A}}
tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
sin2A=2sinAcosA\sin 2A = 2\sin A\cos A
cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1
tan2A=2tanA1tan2A\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}
(a+b)2=a2+b22ab{(a + b)^2} = {a^2} + {b^2} - 2ab

Complete step by step answer:
To find the value of sin4x\sin 4x, we use the sum identity of sin\sin ,
sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
Splitting 4x4x as 2x+2x2x + 2x
sin4x\sin 4x=sin(2x+2x)\sin (2x + 2x)
Now applying the sum identity of sin\sin ,
sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
We know that A=2x,B=2xA = 2x,B = 2x
sin(2x+2x)=sin2xcos2x+cos2xsin2x\sin (2x + 2x) = \sin 2x\cos 2x + \cos 2x\sin 2x
Adding R.H.S we get,
sin(2x+2x)=2sin2xcos2x\sin (2x + 2x) = 2\sin 2x\cos 2x
Applying the sin2x=2sinxcosx\sin 2x = 2\sin x\cos xand cos2x=2cos2x1\cos 2x = 2{\cos ^2}x - 1 formulae
sin4x=2(2sinxcosx)(2cos2x1)\sin 4x = 2(2\sin x\cos x)(2{\cos ^2}x - 1)
Multiplying we get,
sin4x=4sinxcosx(2cos2x1)\sin 4x = 4\sin x\cos x(2{\cos ^2}x - 1)
Simplifying we get,
sin4x=8sinxcos3x4sinxcosx\sin 4x = 8\sin x{\cos ^3}x - 4\sin x\cos x
Hence, sin4x=8sinxcos3x4sinxcosx\sin 4x = 8\sin x{\cos ^3}x - 4\sin x\cos x
Now, solving cos4x\cos 4x,
Changing cos4x\cos 4xas cos2(2x)\cos 2(2x)
We know that, cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1
Considering A=2xA = 2x,
Substituting the formula in cos4x\cos 4x,
cos4x=2cos22x1\cos 4x = 2{\cos ^2}2x - 1
Again substituting cos2x\cos 2x formula,
We get,
cos4x=2(2cos2x1)21\cos 4x = 2{(2{\cos ^2}x - 1)^2} - 1
Substituting (a+b)2=a2+b22ab{(a + b)^2} = {a^2} + {b^2} - 2ab in the above equation
cos4x=2((2cos2x)2+12(2cos2x)(1))1\cos 4x = 2({(2{\cos ^2}x)^2} + 1 - 2(2{\cos ^2}x)(1)) - 1
Simplifying we get,
cos4x=2(4cos4x+14cos2x)1\cos 4x = 2(4{\cos ^4}x + 1 - 4{\cos ^2}x) - 1
cos4x=8cos4x+28cos2x1\cos 4x = 8{\cos ^4}x + 2 - 8{\cos ^2}x - 1
Finally,
cos4x=8cos4x8cos2x+1\cos 4x = 8{\cos ^4}x - 8{\cos ^2}x + 1
Hence, cos4x=8cos4x8cos2x+1\cos 4x = 8{\cos ^4}x - 8{\cos ^2}x + 1
Now, solving cot4x\cot 4x
We know that, cotA=1tanA\cot A = \dfrac{1}{{\tan A}}
So, writing cot4x\cot 4x as 1tan4x\dfrac{1}{{\tan 4x}}
Splitting tan4x\tan 4xastan2(2x)\tan 2(2x),
Then substituting tan2A=2tanA1tan2A\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}} formula here
We know that A=2xA = 2x
tan2(2x)=2tan2x1tan22x\tan 2(2x) = \dfrac{{2\tan 2x}}{{1 - {{\tan }^2}2x}}
Again using tan2A=2tanA1tan2A\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}} formula,
We get,
tan4x=22tanx1tan2x1(2tanx1tan2x)2\tan 4x = 2\dfrac{{\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}}}{{1 - {{\left( {\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}} \right)}^2}}}
Giving the square inside the bracket in denominator
tan4x=22tanx1tan2x12tanx2(1tan2x)2\tan 4x = 2\dfrac{{\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}}}{{1 - \dfrac{{2\tan {x^2}}}{{{{(1 - {{\tan }^2}x)}^2}}}}}
Simplifying denominator,
tan4x=22tanx1tan2x(1tan2x)22tanx2(1tan2x)2\tan 4x = 2\dfrac{{\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}}}{{\dfrac{{{{(1 - {{\tan }^2}x)}^2} - 2\tan {x^2}}}{{{{(1 - {{\tan }^2}x)}^2}}}}}
Expanding the denominators’ numerator in (a+b)2=a2+b22ab{(a + b)^2} = {a^2} + {b^2} - 2ab formula,
tan4x=22tanx1tan2x1+tan4x2tan2x2tanx2(1tan2x)2\tan 4x = 2\dfrac{{\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}}}{{\dfrac{{1 + {{\tan }^4}x - 2{{\tan }^2}x - 2\tan {x^2}}}{{{{(1 - {{\tan }^2}x)}^2}}}}}
Writing the denominator in multiplication by reciprocal,
tan4x=4tanx1tan2x×(1tan2x)21+tan4x4tan2x\tan 4x = \dfrac{{4\tan x}}{{1 - {{\tan }^2}x}} \times \dfrac{{{{(1 - {{\tan }^2}x)}^2}}}{{1 + {{\tan }^4}x - 4{{\tan }^2}x}}
Cancelling 1tan2x1 - {\tan ^2}x
tan4x=4tanx(1tan2x)1+tan4x4tan2x\tan 4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 + {{\tan }^4}x - 4{{\tan }^2}x}}
Simplifying we get,
tan4x=4tanx4tan2x1+tan4x4tan2x\tan 4x = \dfrac{{4\tan x - 4{{\tan }^2}x}}{{1 + {{\tan }^4}x - 4{{\tan }^2}x}}
Finally substituting tan4x\tan 4xin cotx\cot x formula
We know that reciprocal of tan4x\tan 4xiscotx\cot x
cot4x=1+tan4x4tan2x4tanx4tan2x\cot 4x = \dfrac{{1 + {{\tan }^4}x - 4{{\tan }^2}x}}{{4\tan x - 4{{\tan }^2}x}}
Finally, cot4x=1+tan4x4tan2x4tanx4tan2x\cot 4x = \dfrac{{1 + {{\tan }^4}x - 4{{\tan }^2}x}}{{4\tan x - 4{{\tan }^2}x}}
Hence found the values.

Note:
We have found the values of sin4x,cos4x,cot4x\sin 4x,\cos 4x,\cot 4x in one way. But it has more than one way to find the values. For example, we can find sin4x\sin 4x by sin(3x+x)\sin (3x + x) and sin2(2x)\sin 2(2x) same thing we can use in cos4x\cos 4x also. In cot4x\cot 4x we can find the values in terms of cotx\cot x or tanx\tan x. In trigonometry we have many ways to find an answer. So, we need not to depend on one way we have many ways to solve it.