Solveeit Logo

Question

Question: How to find the derivative of \(x\sqrt{1-x}\)?...

How to find the derivative of x1xx\sqrt{1-x}?

Explanation

Solution

Apply the product rule in the given function x1xx\sqrt{1-x}and the formula of product rule is: [u(x).v(x)]=u(x).v(x)+v(x).u(x){{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right) where u(x)=xu(x)=xand v(x)=1xv(x)=\sqrt{1-x}. To further differentiate xxapply differentiation rule that is u(x)=nxn1{u}'\left( x \right)=n{{x}^{n-1}} where according to the question nn is equal to 11and to differentiate 1x\sqrt{1-x} apply power rule: [v(x)n]=nv(x)n1.v(x){{\left[ v{{\left( x \right)}^{n}} \right]}^{\prime }}=nv{{\left( x \right)}^{n-1}}.{v}'\left( x \right) where according to the question nn is equal to 12\dfrac{1}{2}.

Complete step by step solution:
The derivative of x1xx\sqrt{1-x} is as follows:
ddx[x1x]\dfrac{d}{dx}\left[ x\sqrt{1-x} \right]
Applying product rule: [u(x).v(x)]=u(x).v(x)+v(x).u(x){{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right) in the given function we get:
ddx[x]1x+xddx[1x]...(i)\Rightarrow \dfrac{d}{dx}\left[ x \right]\sqrt{1-x}+x\dfrac{d}{dx}\left[ \sqrt{1-x} \right]...(i)
Now to further differentiate xxapply differentiation rule that is u(x)=nxn1{u}'\left( x \right)=n{{x}^{n-1}}
ddx[x]=1...(ii)\Rightarrow \dfrac{d}{dx}\left[ x \right]=1...(ii)
And to differentiate 1x\sqrt{1-x} apply power rule: [v(x)n]=nv(x)n1.v(x){{\left[ v{{\left( x \right)}^{n}} \right]}^{\prime }}=nv{{\left( x \right)}^{n-1}}.{v}'\left( x \right) ddx[1x]=12(1x)121ddx[1x]...(iii)\Rightarrow \dfrac{d}{dx}\left[ \sqrt{1-x} \right]=\dfrac{1}{2}{{\left( 1-x \right)}^{\dfrac{1}{2}-1}}\cdot \dfrac{d}{dx}\left[ 1-x \right]...(iii)
Now putting the value of equation (ii)(ii)and (iii)(iii) in equation (i)(i) we get:
1×1x+x×12(1x)121×ddx[1x]\Rightarrow 1\times \sqrt{1-x}+x\times \dfrac{1}{2}{{\left( 1-x \right)}^{\dfrac{1}{2}-1}}\times \dfrac{d}{dx}\left[ 1-x \right]
Taking the LCM of the power of (1x)\left( 1-x \right) that is 121=122=12\dfrac{1}{2}-1=\dfrac{1-2}{2}=-\dfrac{1}{2} we get power of (1x)\left( 1-x \right) equal to 12-\dfrac{1}{2} and putting this in the above equation we get:
1x+x2(1x)12×ddx[1x]\Rightarrow \sqrt{1-x}+\dfrac{x}{2}{{\left( 1-x \right)}^{-\dfrac{1}{2}}}\times \dfrac{d}{dx}\left[ 1-x \right]
We can also write (1x)12{{\left( 1-x \right)}^{-\dfrac{1}{2}}} as 11x\dfrac{1}{\sqrt{1-x}}. Applying it to the above equation we get:
1x+x21x×ddx[1x]\Rightarrow \sqrt{1-x}+\dfrac{x}{2\sqrt{1-x}}\times \dfrac{d}{dx}\left[ 1-x \right]
After solving the terms within the brackets, we get:
1x+x(ddx[1]ddx[x])21x\Rightarrow \sqrt{1-x}+\dfrac{x\left( \dfrac{d}{dx}\left[ 1 \right]-\dfrac{d}{dx}\left[ x \right] \right)}{2\sqrt{1-x}}
We know that derivative of 11 is 00 and for the derivative of xx again apply differentiation rule that is u(x)=nxn1{u}'\left( x \right)=n{{x}^{n-1}} that is ddx[x]=1\dfrac{d}{dx}\left[ x \right]=1
1x+x(01)21x\Rightarrow \sqrt{1-x}+\dfrac{x\left( 0-1 \right)}{2\sqrt{1-x}}
After solving the terms within the brackets, we get:
1xx21x\Rightarrow \sqrt{1-x}-\dfrac{x}{2\sqrt{1-x}}
By simplifying it further & taking the LCM we get:
2(1x)x21x\Rightarrow \dfrac{2(1-x)-x}{2\sqrt{1-x}}
After solving the brackets in the numerator, we get:
3x221x\Rightarrow -\dfrac{3x-2}{2\sqrt{1-x}}
\therefore Derivative of x1xx\sqrt{1-x} is 3x221x-\dfrac{3x-2}{2\sqrt{1-x}}.

Note:
Students can go wrong by not applying power rule in the function 1x\sqrt{1-x} correctly that is they write ddx[1x]=12(1x)121\dfrac{d}{dx}\left[ \sqrt{1-x} \right]=\dfrac{1}{2}{{\left( \sqrt{1-x} \right)}^{\dfrac{1}{2}-1}}and forget to multiply with the derivative of (1x)\left( 1-x \right) which further leads to the wrong answer. So, the key point is to know all differentiation rule, power rule & product rule right that is the differentiation rule: u(x)=nxn1{u}'\left( x \right)=n{{x}^{n-1}}, the product rule: [u(x).v(x)]=u(x).v(x)+v(x).u(x){{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right) & power rule: [v(x)n]=nv(x)n1.v(x){{\left[ v{{\left( x \right)}^{n}} \right]}^{\prime }}=nv{{\left( x \right)}^{n-1}}.{v}'\left( x \right)