Solveeit Logo

Question

Question: How to find the derivative of \[{{x}^{3}}\arctan \left( 7x \right)\]?...

How to find the derivative of x3arctan(7x){{x}^{3}}\arctan \left( 7x \right)?

Explanation

Solution

To find the derivative first apply the product rule in the given function x3arctan(7x){{x}^{3}}\arctan \left( 7x \right)and the formula of product rule is: [u(x).v(x)]=u(x).v(x)+v(x).u(x){{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right) where u(x)=x3u\left( x \right)={{x}^{3}}and v(x)=arctan(7x)v\left( x \right)=\arctan \left( 7x \right). Secondly, to further differentiate x3{{x}^{3}}apply differentiation rule that is u(x)=nxn1{u}'\left( x \right)=n{{x}^{n-1}} where according to the question nn is equal to 33 & u(x)=x3u\left( x \right)={{x}^{3}}and to differentiate arctan(7x)\arctan \left( 7x \right) apply differentiation rule: [arctan(v(x))]=1v(x)2+1v(x){{\left[ \arctan \left( v\left( x \right) \right) \right]}^{\prime }}=\dfrac{1}{v{{\left( x \right)}^{2}}+1}\cdot {v}'\left( x \right) here v(x)=7xv\left( x \right)=7x. Then if possible, simplify the solution.

Complete step by step solution:
The derivative of x3arctan(7x){{x}^{3}}\arctan \left( 7x \right) is as follows:
ddx[x3arctan(7x)]\dfrac{d}{dx}\left[ {{x}^{3}}\arctan \left( 7x \right) \right]
Applying product rule: [u(x).v(x)]=u(x).v(x)+v(x).u(x){{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right) in the given function we get:
ddx[x3]arctan(7x)+x3ddx[arctan(7x)]...(i)\Rightarrow \dfrac{d}{dx}\left[ {{x}^{3}} \right]\cdot \arctan \left( 7x \right)+{{x}^{3}}\cdot \dfrac{d}{dx}\left[ \arctan \left( 7x \right) \right]...(i)
Now to further differentiate x3{{x}^{3}}apply differentiation rule that is u(x)=nxn1{u}'\left( x \right)=n{{x}^{n-1}} where according to the question nn is equal to 33 & u(x)=x3u(x)={{x}^{3}}that is
ddx[x3]=3x2...(ii)\Rightarrow \dfrac{d}{dx}\left[ {{x}^{3}} \right]=3{{x}^{2}}...(ii)
and to differentiate arctan(7x)\arctan (7x) apply differentiation rule: [arctan(v(x))]=1v(x)2+1v(x){{\left[ \arctan \left( v\left( x \right) \right) \right]}^{\prime }}=\dfrac{1}{v{{\left( x \right)}^{2}}+1}\cdot {v}'\left( x \right) where v(x)=7xv\left( x \right)=7x that is
ddx[arctan(7x)]=1(7x)2+1ddx[7x]...(iii)\Rightarrow \dfrac{d}{dx}\left[ \arctan \left( 7x \right) \right]=\dfrac{1}{{{\left( 7x \right)}^{2}}+1}\cdot \dfrac{d}{dx}\left[ 7x \right]...(iii)
Now putting the values of equation (ii)(ii)and (iii)(iii) in equation (i)(i) we get:
3x2arctan(7x)+x31(7x)2+1ddx[7x]...(iv)\Rightarrow 3{{x}^{2}}\cdot \arctan \left( 7x \right)+{{x}^{3}}\cdot \dfrac{1}{{{\left( 7x \right)}^{2}}+1}\cdot \dfrac{d}{dx}\left[ 7x \right]...(iv)
According to the differentiation rule that is u(x)=nxn1{u}'\left( x \right)=n{{x}^{n-1}} we know that derivative of 7x7x is
ddx[7x]=7...(v)\Rightarrow \dfrac{d}{dx}\left[ 7x \right]=7...(v)
Now putting the value of equation (v)(v) in equation (iv)(iv) and multiplying the terms we get:
3x2arctan(7x)+x371(7x)2+1\Rightarrow 3{{x}^{2}}\cdot \arctan \left( 7x \right)+\dfrac{{{x}^{3}}\cdot 7\cdot 1}{{{\left( 7x \right)}^{2}}+1}
We know that 72{{7}^{2}} is equal to 4949. So, we can write the above equation in simpler form that is
3x2arctan(7x)+7x349x2+1\Rightarrow 3{{x}^{2}}\cdot \arctan \left( 7x \right)+\dfrac{7{{x}^{3}}}{49{{x}^{2}}+1}
\therefore Derivative of x3arctan(7x){{x}^{3}}\arctan \left( 7x \right) is 3x2arctan(7x)+7x349x2+13{{x}^{2}}\cdot \arctan \left( 7x \right)+\dfrac{7{{x}^{3}}}{49{{x}^{2}}+1}.

Note: Students can go wrong by not applying differentiation rule in the function arctan(7x)\arctan \left( 7x \right) correctly that is they write [arctan(7x)]=1(7x)2+1{{\left[ \arctan \left( 7x \right) \right]}^{\prime }}=\dfrac{1}{{{\left( 7x \right)}^{2}}+1} and forget to multiply with the derivative of (7x)\left( 7x \right) which further leads to the wrong answer whereas correct way to write is [arctan(7x)]=1(7x)2+1(7x){{\left[ \arctan \left( 7x \right) \right]}^{\prime }}=\dfrac{1}{{{\left( 7x \right)}^{2}}+1}\cdot \left( 7x \right). So, the key point is to know both differentiation rule: u(x)=nxn1{u}'\left( x \right)=n{{x}^{n-1}}, [arctan(v(x))]=1v(x)2+1v(x){{\left[ \arctan \left( v\left( x \right) \right) \right]}^{\prime }}=\dfrac{1}{v{{\left( x \right)}^{2}}+1}\cdot {v}'\left( x \right) and the product rule: [u(x).v(x)]=u(x).v(x)+v(x).u(x){{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right) right. And avoid multiplication, addition errors.