Solveeit Logo

Question

Question: How to find the definite integral using the limit definition? \( \int_1^4 {\left( {{x^3} - 4} \rig...

How to find the definite integral using the limit definition? 14(x34)dx\int_1^4 {\left( {{x^3} - 4} \right)dx}

Explanation

Solution

If a function f(x)f(x) is continuous on the interval [a,  b][a,\;b] then we will divide the interval into “n” subintervals of equal width, Δx\Delta x , and in each interval we will choose a point, xi{x_i} .

Then the definite integral will be given as
abf(x)dx=limni=1nf(xi)Δx\int_a^b {f(x)dx = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {f({x_i})\Delta x} }
Where Δx\Delta x is given as ban\dfrac{{b - a}}{n}
Solve this as 14(x34)dx=04(x34)dx01(x34)dx\int_1^4 {\left( {{x^3} - 4} \right)dx} = \int_0^4 {\left( {{x^3} - 4} \right)dx} - \int_0^1 {\left( {{x^3} - 4} \right)dx}

Complete step by step solution:
To use the limit definition for finding the definite integral 14(x34)dx\int_1^4 {\left( {{x^3} - 4} \right)dx} , we have to split it in two definite integrals as
14(x34)dx=04(x34)dx01(x34)dx\int_1^4 {\left( {{x^3} - 4} \right)dx} = \int_0^4 {\left( {{x^3} - 4} \right)dx} - \int_0^1 {\left( {{x^3} - 4} \right)dx}

And now we have to find which points in each interval we will use for xi{x_i} . To make the calculation easier we will take appropriate endpoints of each interval.

We know that for nn number of subintervals, width is given as
Δx=ban\Delta x = \dfrac{{b - a}}{n}

We have b1=4,  a1=0  and  b2=1,  a2=0{b_1} = 4,\;{a_1} = 0\;{\text{and}}\;{b_2} = 1,\;{a_2} = 0 so putting these values in order to find the width of subintervals
Δx1=40n  and  Δx2=10n Δx1=4n  and  Δx2=1n  \Rightarrow \Delta {x_1} = \dfrac{{4 - 0}}{n}\;{\text{and}}\;\Delta {x_2} = \dfrac{{1 - 0}}{n} \\\ \Rightarrow \Delta {x_1} = \dfrac{4}{n}\;{\text{and}}\;\Delta {x_2} = \dfrac{1}{n} \\\

We got the width of subintervals then the subintervals can be written as following

1)}}{n},\;\dfrac{{4i}}{n}} \right],....,\;\left[ {\dfrac{{4(n - 1)}}{n},\;4} \right]\;{\text{and}}\;\left[ {0,\;\dfrac{1}{n}} \right],\;\left[ {\dfrac{1}{n},\;\dfrac{2}{n}} \right],....,\;\left[ {\dfrac{{i - 1}}{n},\;\dfrac{i}{n}} \right],....,\;\left[ {\dfrac{{n - 1}}{n},\;1} \right]$$ Where the right end of the $ {i^{th}} $ subinterval is given as $ {x_{{1_i}}} = \dfrac{{4i}}{n}\;{\text{and}}\;{x_{{2_i}}} = \dfrac{i}{n} $ Now we got the parameters, then the summation of the definite integral will be written as

= \sum\limits_{i = 1}^n {f({x_{{1_i}}})\Delta {x_1}} ;{\text{and}};\sum\limits_{i = 1}^n
{f({x_{{2_i}}})\Delta {x_2}} \\
= \sum\limits_{i = 1}^n {f\left( {\dfrac{{4i}}{n};} \right)\left( {\dfrac{4}{n}} \right)}
;{\text{and}};\sum\limits_{i = 1}^n {f\left( {\dfrac{i}{n}} \right);\left( {\dfrac{1}{n}} \right)} \\
= \sum\limits_{i = 1}^n {\left( {{{\left( {\dfrac{{4i}}{n}} \right)}^3} - 4} \right);\left( {\dfrac{4}{n}}
\right)} ;{\text{and}};\sum\limits_{i = 1}^n {\left( {{{\left( {\dfrac{i}{n}} \right)}^3} - 4} \right);\left(
{\dfrac{1}{n}} \right)} \\
= \sum\limits_{i = 1}^n {\left( {{{\dfrac{{64i}}{{{n^3}}}}^3} - 4} \right);\left( {\dfrac{4}{n}} \right)}
;{\text{and}};\sum\limits_{i = 1}^n {\left( {{{\dfrac{i}{{{n^3}}}}^3} - 4} \right);\left( {\dfrac{1}{n}}
\right)} \\
= \sum\limits_{i = 1}^n {\left( {{{\dfrac{{256i}}{{{n^4}}}}^3} - ;\dfrac{{16}}{n}} \right)}
;{\text{and}};\sum\limits_{i = 1}^n {\left( {{{\dfrac{i}{{{n^4}}}}^3} - ;\dfrac{4}{n}} \right)} \\

Now we need to evaluate the summation sign that is we have to use the formulae of summation Here we Know that $ n $ is a constant under the summation notation and $ i $ is a variable, as we go through the integers from $ 1 $ to $ n $ , only $ i $ will change. So considering this point and evaluating the summation

= \sum\limits_{i = 1}^n {f({x_{{1_i}}})\Delta {x_1}} ;{\text{and}};\sum\limits_{i = 1}^n
{f({x_{{2_i}}})\Delta {x_2}} \\
= \sum\limits_{i = 1}^n {\left( {{{\dfrac{{256i}}{{{n^4}}}}^3} - ;\dfrac{{16}}{n}} \right)}
;{\text{and}};\sum\limits_{i = 1}^n {\left( {{{\dfrac{i}{{{n^4}}}}^3} - ;\dfrac{4}{n}} \right)} \\

Usingdistributivepropertyofsummation Using distributive property of summation

= \sum\limits_{i = 1}^n {{{\dfrac{{256i}}{{{n^4}}}}^3} - \sum\limits_{i = 1}^n {\dfrac{{16}}{n}} }
;{\text{and}};\sum\limits_{i = 1}^n {{{\dfrac{i}{{{n^4}}}}^3} - \sum\limits_{i = 1}^n {\dfrac{4}{n}} }
\\

= \dfrac{{256}}{{{n^4}}}\sum\limits_{i = 1}^n {{i^3} - \dfrac{1}{n}\sum\limits_{i = 1}^n {16} }
;{\text{and}};\dfrac{1}{{{n^4}}}\sum\limits_{i = 1}^n {{i^3} - \dfrac{1}{n}\sum\limits_{i = 1}^n 4 }
\\

We know that $ \sum\limits_{i = 1}^n {x_i^3 = } \dfrac{{{n^2}{{(n + 1)}^2}}}{4}\;{\text{and}}\;\sum\limits_{i = 1}^n x = nx $ using this to evaluate the summation

= \dfrac{{256}}{{{n^4}}} \times \dfrac{{{n^2}{{(n + 1)}^2}}}{4} - \dfrac{1}{n} \times 16 \times
n;{\text{and}};\dfrac{1}{{{n^4}}} \times \dfrac{{{n^2}{{(n + 1)}^2}}}{4} - \dfrac{1}{n} \times 4 \times
n \\
= \dfrac{{256}}{{{n^2}}} \times \left( {\dfrac{{{n^2} + 2n + 1}}{4}} \right) -
16;{\text{and}};\dfrac{1}{{{n^2}}} \times \left( {\dfrac{{{n^2} + 2n + 1}}{4}} \right) - 4 \\
= \dfrac{{256}}{4} + \dfrac{{256}}{{2n}} + \dfrac{{256}}{{4{n^2}}} - 16;{\text{and}};\dfrac{1}{4} +
\dfrac{1}{{2n}} + \dfrac{1}{{4{n^2}}} - 4 \\

Nowcomputingthedefiniteintegralas Now computing the definite integral as

\int_a^b {f(x)dx = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {f({x_i})\Delta x} }
\\
= \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{256}}{4} + \dfrac{{256}}{{2n}} +
\dfrac{{256}}{{4{n^2}}} - 16} \right);{\text{and}};\mathop {\lim }\limits_{n \to \infty } \left(
{\dfrac{1}{4} + \dfrac{1}{{2n}} + \dfrac{1}{{4{n^2}}} - 4} \right) \\

Usingdistributivepropertyoflimit, Using distributive property of limit,

= \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{256}}{4} + \dfrac{{256}}{{2n}} +
\dfrac{{256}}{{4{n^2}}} - 16} \right);{\text{and}};\mathop {\lim }\limits_{n \to \infty } \left(
{\dfrac{1}{4} + \dfrac{1}{{2n}} + \dfrac{1}{{4{n^2}}} - 4} \right) \\
= \mathop {\lim }\limits_{n \to \infty } \dfrac{{256}}{4} + \mathop {\lim }\limits_{n \to \infty }
\dfrac{{256}}{{2n}} + \mathop {\lim }\limits_{n \to \infty } \dfrac{{256}}{{4{n^2}}} - \mathop {\lim
}\limits_{n \to \infty } 16;{\text{and}};\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{4} + \mathop

{\lim }\limits_{n \to \infty } \dfrac{1}{{2n}} + \mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{4{n^2}}}
- \mathop {\lim }\limits_{n \to \infty } 4 \\
= \dfrac{{256}}{4} + 0 + 0 - 16;{\text{and}};\dfrac{1}{4} + 0 + 0 - 4 \\
= 64 - 16;{\text{and}};\dfrac{1}{4} - 4 \\
= 48;{\text{and}};\dfrac{{ - 15}}{4} \\

That is $ \int_0^4 {\left( {{x^3} - 4} \right)dx} = 48\;{\text{and}}\;\int_0^1 {\left( {{x^3} - 4} \right)dx} = \dfrac{{ - 15}}{4} $ We know that $ \int_1^4 {\left( {{x^3} - 4} \right)dx} = \int_0^4 {\left( {{x^3} - 4} \right)dx} - \int_0^1 {\left( {{x^3} - 4} \right)dx} $ So putting the values to get the required answer $ = \int_1^4 {\left( {{x^3} - 4} \right)dx} \\\ = \int_0^4 {\left( {{x^3} - 4} \right)dx} - \int_0^1 {\left( {{x^3} - 4} \right)dx} \\\ = 48 - \left( {\dfrac{{ - 15}}{4}} \right) \\\ = 48 + \dfrac{{15}}{4} \\\ = \dfrac{{48 \times 4 + 15}}{4} \\\ = \dfrac{{192 + 15}}{4} \\\ = \dfrac{{207}}{4} \\\ $ **So the required answer is $ \dfrac{{207}}{4} $** **Note:** When the lower limit of a definite integral $ \ne 0 $ then split the limit into two parts and then solve. Learn some general summation formulae, this will help you. There are some more ways to solve this integral, solve them and check the answer.