Question
Question: How to find the definite integral using the limit definition? \( \int_1^4 {\left( {{x^3} - 4} \rig...
How to find the definite integral using the limit definition? ∫14(x3−4)dx
Solution
If a function f(x) is continuous on the interval [a,b] then we will divide the interval into “n” subintervals of equal width, Δx , and in each interval we will choose a point, xi .
Then the definite integral will be given as
∫abf(x)dx=n→∞limi=1∑nf(xi)Δx
Where Δx is given as nb−a
Solve this as ∫14(x3−4)dx=∫04(x3−4)dx−∫01(x3−4)dx
Complete step by step solution:
To use the limit definition for finding the definite integral ∫14(x3−4)dx , we have to split it in two definite integrals as
∫14(x3−4)dx=∫04(x3−4)dx−∫01(x3−4)dx
And now we have to find which points in each interval we will use for xi . To make the calculation easier we will take appropriate endpoints of each interval.
We know that for n number of subintervals, width is given as
Δx=nb−a
We have b1=4,a1=0andb2=1,a2=0 so putting these values in order to find the width of subintervals
⇒Δx1=n4−0andΔx2=n1−0 ⇒Δx1=n4andΔx2=n1
We got the width of subintervals then the subintervals can be written as following
1)}}{n},\;\dfrac{{4i}}{n}} \right],....,\;\left[ {\dfrac{{4(n - 1)}}{n},\;4} \right]\;{\text{and}}\;\left[ {0,\;\dfrac{1}{n}} \right],\;\left[ {\dfrac{1}{n},\;\dfrac{2}{n}} \right],....,\;\left[ {\dfrac{{i - 1}}{n},\;\dfrac{i}{n}} \right],....,\;\left[ {\dfrac{{n - 1}}{n},\;1} \right]$$ Where the right end of the $ {i^{th}} $ subinterval is given as $ {x_{{1_i}}} = \dfrac{{4i}}{n}\;{\text{and}}\;{x_{{2_i}}} = \dfrac{i}{n} $ Now we got the parameters, then the summation of the definite integral will be written as= \sum\limits_{i = 1}^n {f({x_{{1_i}}})\Delta {x_1}} ;{\text{and}};\sum\limits_{i = 1}^n
{f({x_{{2_i}}})\Delta {x_2}} \\
= \sum\limits_{i = 1}^n {f\left( {\dfrac{{4i}}{n};} \right)\left( {\dfrac{4}{n}} \right)}
;{\text{and}};\sum\limits_{i = 1}^n {f\left( {\dfrac{i}{n}} \right);\left( {\dfrac{1}{n}} \right)} \\
= \sum\limits_{i = 1}^n {\left( {{{\left( {\dfrac{{4i}}{n}} \right)}^3} - 4} \right);\left( {\dfrac{4}{n}}
\right)} ;{\text{and}};\sum\limits_{i = 1}^n {\left( {{{\left( {\dfrac{i}{n}} \right)}^3} - 4} \right);\left(
{\dfrac{1}{n}} \right)} \\
= \sum\limits_{i = 1}^n {\left( {{{\dfrac{{64i}}{{{n^3}}}}^3} - 4} \right);\left( {\dfrac{4}{n}} \right)}
;{\text{and}};\sum\limits_{i = 1}^n {\left( {{{\dfrac{i}{{{n^3}}}}^3} - 4} \right);\left( {\dfrac{1}{n}}
\right)} \\
= \sum\limits_{i = 1}^n {\left( {{{\dfrac{{256i}}{{{n^4}}}}^3} - ;\dfrac{{16}}{n}} \right)}
;{\text{and}};\sum\limits_{i = 1}^n {\left( {{{\dfrac{i}{{{n^4}}}}^3} - ;\dfrac{4}{n}} \right)} \\
= \sum\limits_{i = 1}^n {f({x_{{1_i}}})\Delta {x_1}} ;{\text{and}};\sum\limits_{i = 1}^n
{f({x_{{2_i}}})\Delta {x_2}} \\
= \sum\limits_{i = 1}^n {\left( {{{\dfrac{{256i}}{{{n^4}}}}^3} - ;\dfrac{{16}}{n}} \right)}
;{\text{and}};\sum\limits_{i = 1}^n {\left( {{{\dfrac{i}{{{n^4}}}}^3} - ;\dfrac{4}{n}} \right)} \\
= \sum\limits_{i = 1}^n {{{\dfrac{{256i}}{{{n^4}}}}^3} - \sum\limits_{i = 1}^n {\dfrac{{16}}{n}} }
;{\text{and}};\sum\limits_{i = 1}^n {{{\dfrac{i}{{{n^4}}}}^3} - \sum\limits_{i = 1}^n {\dfrac{4}{n}} }
\\
= \dfrac{{256}}{{{n^4}}}\sum\limits_{i = 1}^n {{i^3} - \dfrac{1}{n}\sum\limits_{i = 1}^n {16} }
;{\text{and}};\dfrac{1}{{{n^4}}}\sum\limits_{i = 1}^n {{i^3} - \dfrac{1}{n}\sum\limits_{i = 1}^n 4 }
\\
= \dfrac{{256}}{{{n^4}}} \times \dfrac{{{n^2}{{(n + 1)}^2}}}{4} - \dfrac{1}{n} \times 16 \times
n;{\text{and}};\dfrac{1}{{{n^4}}} \times \dfrac{{{n^2}{{(n + 1)}^2}}}{4} - \dfrac{1}{n} \times 4 \times
n \\
= \dfrac{{256}}{{{n^2}}} \times \left( {\dfrac{{{n^2} + 2n + 1}}{4}} \right) -
16;{\text{and}};\dfrac{1}{{{n^2}}} \times \left( {\dfrac{{{n^2} + 2n + 1}}{4}} \right) - 4 \\
= \dfrac{{256}}{4} + \dfrac{{256}}{{2n}} + \dfrac{{256}}{{4{n^2}}} - 16;{\text{and}};\dfrac{1}{4} +
\dfrac{1}{{2n}} + \dfrac{1}{{4{n^2}}} - 4 \\
\int_a^b {f(x)dx = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {f({x_i})\Delta x} }
\\
= \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{256}}{4} + \dfrac{{256}}{{2n}} +
\dfrac{{256}}{{4{n^2}}} - 16} \right);{\text{and}};\mathop {\lim }\limits_{n \to \infty } \left(
{\dfrac{1}{4} + \dfrac{1}{{2n}} + \dfrac{1}{{4{n^2}}} - 4} \right) \\
= \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{256}}{4} + \dfrac{{256}}{{2n}} +
\dfrac{{256}}{{4{n^2}}} - 16} \right);{\text{and}};\mathop {\lim }\limits_{n \to \infty } \left(
{\dfrac{1}{4} + \dfrac{1}{{2n}} + \dfrac{1}{{4{n^2}}} - 4} \right) \\
= \mathop {\lim }\limits_{n \to \infty } \dfrac{{256}}{4} + \mathop {\lim }\limits_{n \to \infty }
\dfrac{{256}}{{2n}} + \mathop {\lim }\limits_{n \to \infty } \dfrac{{256}}{{4{n^2}}} - \mathop {\lim
}\limits_{n \to \infty } 16;{\text{and}};\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{4} + \mathop
{\lim }\limits_{n \to \infty } \dfrac{1}{{2n}} + \mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{4{n^2}}}
- \mathop {\lim }\limits_{n \to \infty } 4 \\
= \dfrac{{256}}{4} + 0 + 0 - 16;{\text{and}};\dfrac{1}{4} + 0 + 0 - 4 \\
= 64 - 16;{\text{and}};\dfrac{1}{4} - 4 \\
= 48;{\text{and}};\dfrac{{ - 15}}{4} \\